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Abstract
A new model for the bending of a Bernoulli–Euler beam is developed using
a modified couple stress theory. A variational formulation based on the
principle of minimum total potential energy is employed. The new model
contains an internal material length scale parameter and can capture the size
effect, unlike the classical Bernoulli–Euler beam model. The former reduces
to the latter in the absence of the material length scale parameter. As a direct
application of the new model, a cantilever beam problem is solved. It is
found that the bending rigidity of the cantilever beam predicted by the newly
developed model is larger than that predicted by the classical beam model.
The difference between the deflections predicted by the two models is very
significant when the beam thickness is small, but is diminishing with the
increase of the beam thickness. A comparison shows that the predicted size
effect agrees fairly well with that observed experimentally.

1. Introduction

Thin (cantilever) beams have found important applications
in micro- and nano-scale measurements such as those in
biosensors and atomic force microscopes (e.g., Pereira (2001),
Pei et al (2004)). In these applications, the beam thickness is
typically on the order of microns, and the size effect (i.e.,
the thinner, the stiffer) is often observed (e.g., Lam et al
(2003), McFarland and Colton (2005)). Lacking an internal
material length scale parameter, classical beam models cannot
be used to interpret this microstructure-dependent size effect
and, therefore, need to be extended by using higher order
(non-local) continuum theories that contain additional material
length scale parameters.

The classical couple stress elasticity theory elaborated by
Koiter (1964) and others including Toupin (1962), Mindlin
and Tiersten (1962) and Mindlin (1963) is a higher order
continuum theory that contains four material constants (two
classical and two additional) for isotropic elastic materials.
This theory has been applied to model the pure bending
of a circular cylinder by Anthoine (2000). Beam bending
models based on other non-local elasticity theories have also
been reported. For example, the higher order model for
Bernoulli–Euler beams developed by Papargyri-Beskou et al
(2003) is based on the gradient elasticity theory with surface

energy of Vardoulakis and Sulem (1995), which involves
four elastic constants (two classical and two non-classical).
This strain gradient beam model has been studied further
by Vardoulakis and Giannakopoulos (2006). The non-local
Bernoulli–Euler beam model proposed by Peddieson et al
(2003) using a constitutive equation due to Eringen (1983)
also contains two additional material constants. Considering
the difficulties in determining the microstructure related length
scale parameters (e.g., Yang and Lakes (1982), Lam et al
(2003)) and the approximate nature of beam theories, it is
desirable to have non-local beam models that involve only one
additional material length scale parameter.

A modified couple stress theory has recently been
proposed by Yang et al (2002), in which the couple stress
tensor is symmetric and only one internal material length scale
parameter is involved, unlike those in the classical couple stress
theory mentioned above. A variational formulation of this
modified couple stress theory has subsequently been provided
by Park and Gao (2006).

The objective of this paper is to develop a new non-local
model for Bernoulli–Euler beams using the minimum total
potential energy principle and the concepts of the modified
couple stress theory of Yang et al (2002). The rest of the
paper is organized as follows. In section 2, the strain energy
density function is constructed by using the modified couple
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stress theory and the displacement field typical for a Bernoulli–
Euler beam. The principle of minimum total potential energy
is then used to obtain the governing equation and boundary
conditions for the beam. The resulting beam model contains
an internal material length scale parameter and can capture
the size effect. To illustrate the newly developed model,
a cantilever beam problem is solved in section 3, and the
differences between the new beam model and the classical
Bernoulli–Euler beam theory are quantitatively shown. The
predictions are also compared to and verified by the existing
experimental data. The paper concludes with a summary in
section 4.

2. Formulation

According to the modified couple stress theory of Yang et al
(2002), the strain energy density is a function of both strain
(conjugated with stress) and curvature (conjugated with couple
stress). It then follows that the strain energy U in a deformed
isotropic linear elastic material occupying region ! is given
by

U = 1
2

∫∫∫

!

(σ : ε + m : χ) dv, (1)

where the stress tensor, σ, strain tensor, ε, deviatoric part of
the couple stress tensor, m, and symmetric curvature tensor,
χ, are, respectively, defined by

σ = λ tr (ε)I + 2µε, (2)

ε = 1
2 [∇u + (∇u)T], (3)

m = 2l2µχ, (4)

χ = 1
2 [∇θ + (∇θ)T], (5)

with λ and µ being Lamé’s constants, l a material length scale
parameter, u the displacement vector and θ the rotation vector
given by

θ = 1
2 curl u. (6)

Clearly, both σ and m, as respectively defined in equations (2)
and (4), are symmetric, with σ = σT and m = mT due
to the symmetry of ε and χ given in equations (3) and (5),
respectively. Also, note that the square of the length scale
parameter l introduced in equation (4) is the ratio of the
modulus of curvature to the modulus of shear, and l is therefore
regarded as a material property measuring the effect of
couple stress (Mindlin (1963)).

The work done by external forces is

W =
∫∫∫

!

(f · u + c · θ) dv +
∫∫

∂!

(t · u + s · θ) da, (7)

where f , c, t and s are, respectively, the body force, body
couple, traction and surface couple, and ∂! is the surface
of !.

Using the coordinate system (x, y, z) shown in figure 1,
where x-axis is coincident with the centroidal axis of the
undeformed beam, y-axis is the neutral axis and z-axis is the
symmetry axis, the displacement components in a Bernoulli–
Euler beam can be represented by (e.g., Shames (1985))

u = −zψ(x), v = 0, w = w(x), (8)

x
dx

dx
dwxw +)(

dx

x  
)(xw

dx
dw≈

O

z  w

x

z  w

L

)(xq

O

ψ
ψ

Figure 1. Beam configuration.

where u, v,w are, respectively, the x-, y- and z-components
of the displacement vector u, and ψ is the rotation angle of
the centroidal axis of the beam given approximately by

ψ ≈ dw(x)

dx
(9)

for small deformations considered here.
From equations (3), (8) and (9) it follows that

εxx = −z
d2w(x)

dx2
,

εyy = εzz = εxy = εyz = εzx = 0,

(10)

and from equations (6), (8) and (9) that

θy = − dw(x)

dx
, θx = θz = 0. (11)

Using equation (11) in equation (5) gives

χxy = − 1
2

d2w(x)

dx2
,

χxx = χyy = χzz = χyz = χzx = 0,

(12)

and inserting equation (10) into equation (2) yields

σxx = E(1 − ν)

(1 + ν)(1 − 2ν)

(
−z

d2w(x)

dx2

)
,

σyy = σzz = Eν

(1 + ν)(1 − 2ν)

(
−z

d2w(x)

dx2

)
,

σxy = σyz = σzx = 0,

(13)

where E, ν are, respectively, Young’s modulus and Poisson’s
ratio of the beam material which are related to Lamé’s
constants λ and µ by (e.g., Timoshenko and Goodier (1970))

λ = Eν

(1 + ν)(1 − 2ν)
, (14a)

µ = E

2(1 + ν)
. (14b)

The material constant µ defined in equation (14b) is also
known as the shear modulus (often denoted by G). For a slender
beam with a large aspect ratio, the Poisson effect is secondary
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and may be neglected to facilitate the formulation of a simple
beam theory (e.g., Shames (1985)). By setting ν = 0, as
was done in classical beam theories (e.g., Shames (1985)),
equation (13) reduces to

σxx = −Ez
d2w(x)

dx2
, all other σij = 0. (15)

Similarly, the use of equation (12) in equation (4) gives

mxy = −µl2 d2w(x)

dx2
,

mxx = myy = mzz = myz = mzx = 0,

(16)

where µ is the shear modulus (see equation (14b)).
Substituting equations (10), (12), (15) and (16) into

equation (1) then leads to

U = − 1
2

∫ L

x=0
Mx

d2w(x)

dx2
dx − 1

2

∫ L

x=0
Yxy

d2w(x)

dx2
dx, (17)

where the resultant moment Mx and couple moment Yxy are
defined, respectively, by

Mx =
∫

A

σxxz dA, (18a)

Yxy =
∫

A

mxy dA. (18b)

By neglecting the body force and body couple, the work done
by the external forces in the form of transverse loading q(x)

shown in figure 1 (without surface couple) is obtained from
equation (7) as

W =
∫ L

x=0
q(x)w(x) dx. (19)

From equations (17) and (19) it follows that the total potential
energy * in the loaded beam is

* = U − W = − 1
2

∫ L

x=0
(Mx + Yxy)

d2w(x)

dx2
dx

−
∫ L

x=0
q(x)w(x) dx. (20)

Taking the first variation of * gives

δ* = −(Mx + Yxy)δw
′(x)|L0 +

(
dMx

dx
+

dYxy

dx

)
δw(x)|L0

−
∫ L

0

(
d2Mx

dx2
+

d2Yxy

dx2
+ q

)
δw(x) dx. (21)

Applying the principle of minimum total potential energy, i.e.,
δ* = 0 for the stable equilibrium (e.g., Steigmann (1992)),
and the fundamental lemma of the calculus of variation (e.g.,
Gao and Mall (2001)) then leads to, from equation (21),

d2Mx

dx2
+

d2Yxy

dx2
+ q(x) = 0, ∀ x ∈ (0, L) (22)

as the governing (equilibrium) equation, and

Mx + Yxy or
dw

dx
d(Mx + Yxy)

dx
or w

⎫
⎪⎬

⎪⎭

prescribed at x = 0 and x = L

(23)

as the boundary conditions.

L

P

A B x

z w

b

h
y

z

Figure 2. Cantilever beam problem.

From equations (15), (16) and (18a, 18b) it follows that

Mx = −EI
d2w(x)

dx2
, (24a)

Yxy = −µA l2 d2w(x)

dx2
, (24b)

where I is the usual second moment of cross-sectional area
defined by

I =
∫

A

z2 dA. (25)

Substituting equations (24a, 24b) into equation (22) then gives

(EI + µAl2)
d4w(x)

dx4
= q(x) (26)

as the equilibrium equation of the beam in terms of w(x).
Furthermore, combining equations (24a) and (24b) yields

Mx + Yxy = −(EI + µAl2)
d2w(x)

dx2
, (27)

which shows that the bending deformation of the beam has
two contributions: one associated with the normal stress
component σ xx (the conventional term; see equations (18a)
and (24a)) and the other associated with the couple stress
component mxy (the additional term; see equations (18b) and
(24b)). Equation (27) also indicates that the bending rigidity
of the beam, (EI + µAl2), explicitly depends on l. The value of
l is related to and changes with the underlying microstructure
of the beam material.

It is seen from equations (22)–(27) that the current beam
model based on the modified couple stress theory contains only
one additional material constant, i.e., internal material length
scale parameter l, unlike the other non-local beam models
reviewed in section 1. Nevertheless, the presence of l enables
the incorporation of the material microstructural features in the
new model and renders it possible to explain the size effect.
This will be demonstrated further in the next section.

Clearly, when the microstructural effect is suppressed by
letting l = 0, the new model defined by equations (22)–(27)
will reduce to the classical Bernoulli–Euler beam model.

3. Example: a cantilever beam problem

The Bernoulli–Euler beam model based on the modified couple
stress theory of Yang et al (2002) is developed in the preceding
section. In this section, the problem of a cantilever beam
with the loading, geometry and cross-sectional shape shown
in figure 2 is solved by directly applying the new model.

Following equation (23), the boundary conditions of this
problem are

w|x=0 = 0, (28a)
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 P =100µN, b/h =2, L =20h
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Figure 3. Deflection of the cantilever beam.

dw

dx

∣∣∣∣
x=0

= 0, (28b)

(Mx + Yxy)|x=L = 0, (28c)

d(Mx + Yxy)

dx

∣∣∣∣
x=L

= P, (28d )

where P is the magnitude of the applied force. Integrating the
governing equation given in equation (26) four times gives,
with q(x) = 0 here,

(EI + µA l2)w(x) = C1

6
x3 +

C2

2
x2 + C3x + C4. (29)

Using equations (28a)–(28d ) in equation (29) will yield, with
the help of equations (24a, 24b),

C1 = −P, C2 = PL, C3 = C4 = 0. (30)

It then follows from equations (29) and (30) that

w (x) = Px2

6(EI + µAl2)
(3L − x) (31)

as the deflection of the beam at the x cross-section. Knowing
w(x), all other quantities will be readily determined using
the formulae derived in section 2. It should be mentioned
that the beam deflection relation given by equation (31) is
similar to that provided in McFarland and Colton (2005) for
a cantilever plate using a different approach based on the
micropolar elasticity theory.

If the microstructural effect, as measured by the internal
material length parameter l, is neglected, equation (31) reduces
to

w (x) = Px2

6EI
(3L − x), (32)

which is the well-known deflection formula given by the
classical Bernoulli–Euler beam theory for the cantilever beam
shown in figure 2. A comparison of equations (31) and (32)
shows that the classical beam theory predicts a larger deflection
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Figure 4. Bending rigidity of the cantilever beam.

than that by the new model based on the modified couple stress
theory. This is further illustrated in figure 3.

Figure 3 compares the deflections of the cantilever beam
predicted by the new model and by the classical Bernoulli–
Euler beam theory. For illustration purpose, the beam
considered here is taken to be made of epoxy (Lam et al (2003))
with the following properties: E = 1.44 GPa, ν = 0.38, l =
17.6 µm, with the value of E obtained from figure 9 of Lam
et al (2003) (for bending tests) and the value of l determined
from their equation (68)2 by letting bh = 24 µm, ν = 0.38,
and l0 = l1 = 0, l2 ≡ l (see Lam et al (2003), p 1484, p 1506).
Here l0, l1 and l2 are the three material length scale parameters
involved in the strain gradient elasticity theory proposed by
Lam et al (2003) (see their equation (44)), which includes
the modified couple stress theory of Yang et al (2002) as a
special case when the dilatation gradient (measured by l0) and
the deviatoric stretch gradient (measured by l1) effects are
ignored. Also, bh, called a higher order bending parameter by
Lam et al (2003), is a material constant related to l0, l1, l2 and ν

(Poisson’s ratio) (see their equation (68)2). The value of bh =
24 µm used here is taken from Lam et al (2003), where it
was obtained from curve fitting the experimental data. The
cross-sectional shape is kept to be the same by letting b/h = 2
(see figure 2) for all cases. The values of P and h have been so
chosen that the beam remains elastic everywhere, as was done
in Lam et al (2003). Clearly, it is seen from figure 3 that the
deflection predicted by the classical beam theory is larger than
that by the new model along the entire length of the cantilever
beam and for all cases considered. Figure 3 also shows that the
difference between the two sets of predicted values is very large
when the thickness of the beam (h) is on the order of 10 µm but
is diminishing when the thickness of the beam becomes larger
(h around 100 µm here), thereby indicating that the size effect
is only significant at the micron scale. This agrees with the
general trends observed in experiments, as shown in figure 4,
where the normalized bending rigidity D′ predicted by the
present beam model is compared to the experimental data

2358

t.br 6

l "
' exit
l "



Bernoulli–Euler beam model based on a modified couple stress theory

provided in Lam et al (2003) (see their figure 12). The
bending tests of Lam et al (2003) were performed using
a Hysitron Triboindenter, with the epoxy beam specimens
fabricated through casting. The normalized bending rigidity
D′ for the plane stress beam (with ν = 0) here is given
by

D′ ≡ EI + µAl2

bh3
= E

12

[

1 + 2
(

bh

h

)2
]

, (33)

where use has been made of equation (14b) and the following
relations:

I = bh3

12
, (34a)

A = bh, (34b)

l =

√
b2

h

3 (1 − ν)
, (34c)

with equation (34c) obtained from equation (68)2 of Lam
et al (2003) using l0 = l1 = 0, l2 ≡ l for the modified couple
stress theory as mentioned above. Figure 4 further illustrates
the significant size effect displayed by beams with a small
thickness (h < 100 µm here): the smaller the thickness (h)
is, the larger the normalized bending stiffness (D′) is. It is
seen from figure 4 that this experimentally observed effect
is captured fairly well by the new beam model based on the
modified couple stress theory of Yang et al (2002). In contrast,
the classical beam theory does not have the same capability,
as shown in figure 4.

4. Summary

A new model for the bending of a Bernoulli–Euler beam
is developed by using the minimum total potential energy
principle and a modified couple stress theory. The model
contains an internal material length scale parameter to
account for the microstructural effect, unlike that in the
classical Bernoulli–Euler beam theory. The inclusion of
this additional material constant enables the new model to
capture the size effect. When the microstructural effect is
neglected, the new model reduces to that of the classical beam
theory.

A cantilever beam problem is solved by directly applying
the newly developed beam model. The solution is compared
to that of the classical beam theory for the same problem. The
numerical results show that the deflection of the cantilever
beam predicted by the new model is always smaller than that by
the classical beam model. The smaller the beam thickness, the
larger the difference between the deflection values predicted
by the two models. However, the difference is diminishing
with the increase of the beam thickness. These predictions
confirm the size effect at the micron scale observed in bending
tests and compare fairly well with the existing experimental
data.
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