Composites	Lesson 25		ب اللما لرحى الرمم
chapter VIII Third-order Theory of Laminated Composite Plates			
8.1 - Introduction	\		
Higher-order theories can represent the Kinematics better, may not require			
shear correction factors, and can yield more accurate interlaminar stress			
distributions. However, they involve higher_order stress resultants that			
are difficult to interpret physically and require considerably more			
computational effort.	Therefore, such theor	ies should	
be used only when nece	essary.		
The reason for expan	ding the displacements	up to the	
cubic term in the	thickness coordinate i	s to have	

quadratic variation of the transverse shear strains and transverse

shear stresses through each layer.

8.2 A Third-order Plate Theory

8.2-1 Displacement Field

$$u = u_{o} + Z \phi_{x} + Z^{2} \theta_{z} + Z^{3} \lambda_{x} \qquad (8.2.1)$$

$$v = v_{o} + Z \phi_{y} + Z^{2} \theta_{y} + Z^{3} \lambda_{y} \qquad (8.2.1)$$

$$w = w_{o}$$

$$u_{o} = u(n, y, 0, t) , \quad v_{o} = v(n, y, 0, t) , \quad w_{o} = w(n, y, 0, t)$$

$$\phi_{x} = \left(\frac{\partial u}{\partial z}\right)_{Z=0} , \quad \phi_{y} = \left(\frac{\partial v}{\partial z}\right)_{Z=0} , \quad 2\theta_{x} = \left(\frac{\partial^{2} u}{\partial z^{2}}\right)_{Z=0} \qquad (9.2.2)$$

$$z_{o} = \left(\frac{\partial^{2} v}{\partial z^{2}}\right)_{Z=0} , \quad \delta \lambda_{x} = \left(\frac{\partial^{3} u}{\partial z^{3}}\right)_{Z=0} , \quad \delta \lambda_{y} = \left(\frac{\partial^{3} v}{\partial z^{3}}\right)_{Z=0} \qquad z_{o}$$
Suppose that we wish to impose traction-free boundary conditions on the top and bottom faces of the laminate.

σx2 (x,y, ± h 2, t) = 0, σy2(x, y, ± h 2, t) = 0 (8.2.3)

$$= \sum_{\substack{0 = \sigma_{xz}(x, y, \pm h/2, t) = Q_{55}\gamma_{xz}(x, y, \pm h/2, t) + Q_{45}\gamma_{yz}(x, y, \pm h/2, t), \\ 0 = \sigma_{yz}(x, y, \pm h/2, t) = Q_{45}\gamma_{xz}(x, y, \pm h/2, t) + Q_{44}\gamma_{yz}(x, y, \pm h/2, t)}$$
(8.2.4)

$$\phi_x + \frac{\partial w_0}{\partial x} + \left(-h\theta_x + \frac{3h^2}{4}\lambda_x\right) = 0, \quad \phi_x + \frac{\partial w_0}{\partial x} + \left(h\theta_x + \frac{3h^2}{4}\lambda_x\right) = 0$$
$$\phi_y + \frac{\partial w_0}{\partial y} + \left(-h\theta_y + \frac{3h^2}{4}\lambda_y\right) = 0, \quad \phi_y + \frac{\partial w_0}{\partial y} + \left(h\theta_y + \frac{3h^2}{4}\lambda_y\right) = 0$$

or

$$\lambda_x = -\frac{4}{3h^2} \left(\phi_x + \frac{\partial w_0}{\partial x} \right), \quad \theta_x = 0; \quad \lambda_y = -\frac{4}{3h^2} \left(\phi_y + \frac{\partial w_0}{\partial y} \right), \quad \theta_y = 0$$

Consider
$$C_2 = 3C_1$$
, $C_1 = \frac{4}{3h^2}$ then

$$\begin{cases} \varepsilon_{xx}^{(0)} \\ \varepsilon_{yy}^{(0)} \\ \gamma_{xy}^{(0)} \end{cases} = \begin{cases} \frac{\partial u_0}{\partial x} + \frac{1}{2} \left(\frac{\partial w_0}{\partial x} \right)^2 \\ \frac{\partial u_0}{\partial y} + \frac{1}{2} \left(\frac{\partial w_0}{\partial y} \right)^2 \\ \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} + \frac{\partial w_0}{\partial x} \frac{\partial w_0}{\partial y} \end{cases}$$

$$\begin{cases} \varepsilon_{xx}^{(1)} \\ \varepsilon_{yy}^{(1)} \\ \gamma_{xy}^{(1)} \end{cases} = \begin{cases} \frac{\partial \phi_x}{\partial x} \\ \frac{\partial \phi_y}{\partial y} \\ \frac{\partial \phi_y}{\partial y} + \frac{\partial \phi_y}{\partial x} \end{cases}, \quad \begin{cases} \gamma_{yz}^{(0)} \\ \gamma_{xz}^{(0)} \end{cases} = \begin{cases} \phi_y + \frac{\partial w_0}{\partial y} \\ \phi_x + \frac{\partial w_0}{\partial x} \end{cases}$$

$$\begin{cases} \varepsilon_{xx}^{(3)} \\ \varepsilon_{yy}^{(3)} \\ \gamma_{xy}^{(3)} \end{cases} = -c_1 \begin{cases} \frac{\partial \phi_x}{\partial x} + \frac{\partial^2 w_0}{\partial x^2} \\ \frac{\partial \phi_y}{\partial y} + \frac{\partial^2 w_0}{\partial y^2} \\ \frac{\partial \phi_y}{\partial y} + \frac{\partial^2 w_0}{\partial y^2} \\ \frac{\partial \phi_y}{\partial y} + \frac{\partial^2 w_0}{\partial y^2} \end{cases}, \quad \begin{cases} \gamma_{yz}^{(2)} \\ \gamma_{xz}^{(2)} \end{cases} = -c_2 \begin{cases} \phi_y + \frac{\partial w_0}{\partial y} \\ \phi_x + \frac{\partial w_0}{\partial x} \end{cases}$$

8.2-3 Equations of Motion

$$\begin{split} \delta U &= \int_{\Omega_0} \left\{ \int_{-\frac{h}{2}}^{\frac{h}{2}} \left[\sigma_{xx} \left(\delta \varepsilon_{xx}^{(0)} + z \delta \varepsilon_{xx}^{(1)} - c_1 z^3 \delta \varepsilon_{xx}^{(3)} \right) \right. \\ &+ \sigma_{yy} \left(\delta \varepsilon_{yy}^{(0)} + z \delta \varepsilon_{yy}^{(1)} - c_1 z^3 \varepsilon_{yy}^{(3)} \right) + \sigma_{xy} \left(\delta \gamma_{xy}^{(0)} + z \delta \gamma_{xy}^{(1)} - c_1 z^3 \delta \gamma_{xy}^{(3)} \right) \right. \\ &+ \sigma_{xz} \left(\delta \gamma_{xz}^{(0)} + z^2 \delta \gamma_{xz}^{(2)} \right) + \sigma_{yz} \left(\delta \gamma_{yz}^{(0)} + z^2 \delta \gamma_{yz}^{(2)} \right) \right] dz \right\} dx dy \\ &= \int_{\Omega_0} \left(N_{xx} \delta \varepsilon_{xx}^{(0)} + M_{xx} \delta \varepsilon_{xx}^{(1)} - c_1 P_{xx} \delta \varepsilon_{xx}^{(3)} + N_{yy} \delta \varepsilon_{yy}^{(0)} + M_{yy} \delta \varepsilon_{yy}^{(1)} - c_1 P_{yy} \delta \varepsilon_{yy}^{(3)} \right. \\ &+ N_{xy} \delta \gamma_{xy}^{(0)} + M_{xy} \delta \gamma_{xy}^{(1)} - c_1 P_{xy} \delta \gamma_{xy}^{(3)} \\ &+ Q_x \delta \gamma_{xz}^{(0)} - c_2 R_x \delta \gamma_{xz}^{(2)} + Q_y \delta \gamma_{yz}^{(0)} - c_2 R_y \delta \gamma_{yz}^{(2)} \right) dx dy \\ \delta V &= - \int_{\Omega_0} \left[q_b(x, y) \delta w(x, y, -\frac{h}{2}) + q_t(x, y) \delta w(x, y, \frac{h}{2}) \right] dx dy \\ &- \int_{\Gamma} \int_{-\frac{h}{2}}^{\frac{h}{2}} \left[\hat{\sigma}_{nn} \left(\delta u_n + z \delta \phi_n - c_1 z^3 \delta \varphi_n \right) \right. \\ &+ \hat{\sigma}_{ns} \left(\delta u_s + z \delta \phi_s - c_1 z^3 \delta \varphi_{ns} \right) + \hat{\sigma}_{nz} \delta w_0 \right] dz d\Gamma \end{aligned}$$

(8.2-9)

$$\delta K = \int_{\Omega_0} \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho_0 \left[\left(\dot{u}_0 + z\dot{\phi}_x - c_1 z^3 \dot{\varphi}_x \right) \left(\delta \dot{u}_0 + z\delta \dot{\phi}_x - c_1 z^3 \delta \dot{\varphi}_x \right) \right. \\ \left. + \left(\dot{v}_0 + z\dot{\phi}_y - c_1 z^3 \dot{\varphi}_y \right) \left(\delta \dot{v}_0 + z\delta \dot{\phi}_y - c_1 z^3 \delta \dot{\varphi}_y \right) + \dot{w}_0 \delta \dot{w}_0 \right] dv$$

$$= \int_{\Omega_0} \left[\left(I_0 \dot{u}_0 + I_1 \dot{\phi}_x - c_1 I_3 \dot{\varphi}_x \right) \delta \dot{u}_0 + \left(I_1 \dot{u}_0 + I_2 \dot{\phi}_x - c_1 I_4 \dot{\varphi}_x \right) \delta \dot{\phi}_x \right. \\ \left. - c_1 \left(I_3 \dot{u}_0 + I_4 \dot{\phi}_x - c_1 I_6 \dot{\varphi}_x \right) \delta \dot{\varphi}_x + \left(I_0 \dot{v}_0 + I_1 \dot{\phi}_y - c_1 I_3 \dot{\varphi}_y \right) \delta \dot{v}_0 \\ \left. + \left(I_1 \dot{v}_0 + I_2 \dot{\phi}_y - c_1 I_4 \dot{\varphi}_y \right) \delta \dot{\phi}_y - c_1 \left(I_3 \dot{u}_0 + I_4 \dot{\phi}_y - c_1 I_6 \dot{\varphi}_y \right) \delta \dot{\varphi}_y \right] dxdy$$

wher Ro denotes the midplane of the laminate, and

$$\begin{cases} N_{\alpha\beta} \\ M_{\alpha\beta} \\ P_{\alpha\beta} \\ P_{\alpha\beta} \end{cases} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\alpha\beta} \begin{cases} 1 \\ z \\ z^3 \\ \end{cases} dz, \quad \begin{cases} Q_{\alpha} \\ R_{\alpha} \\ \end{cases} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\alpha z} \begin{cases} 1 \\ z^2 \\ \end{cases} dz \qquad (8 \cdot 2 - \ell 2)$$

$$I_i = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho_0 (z)^i dz \quad (i = 0, 1, 2, \dots, 6)$$

By using above equations the equations of motion can be obtain:

$$\begin{array}{c|c} \frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{xy}}{\partial y} = I_0 \ddot{u}_0 + J_1 \ddot{\phi}_x - c_1 I_3 \frac{\partial \ddot{u}_0}{\partial x} & & & & & & \\ \frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{yy}}{\partial y} = I_0 \ddot{v}_0 + J_1 \ddot{\phi}_y - c_1 I_3 \frac{\partial \ddot{u}_0}{\partial y} & & & & & \\ \frac{\partial \bar{Q}_x}{\partial x} + \frac{\partial \bar{Q}_y}{\partial y} + \frac{\partial}{\partial x} (N_{xx} \frac{\partial u_0}{\partial x} + N_{xy} \frac{\partial u_0}{\partial y}) + \frac{\partial}{\partial y} (N_{xy} \frac{\partial u_0}{\partial x} + N_{yy} \frac{\partial u_0}{\partial y}) \\ + c_1 (\frac{\partial^2 P_{xx}}{\partial x^2} + 2\frac{\partial^2 P_{xy}}{\partial x \partial y} + \frac{\partial^2 P_{yy}}{\partial y^2}) + q = I_0 \ddot{w}_0 - c_1^2 I_6 (\frac{\partial^2 \ddot{w}_0}{\partial x^2} + \frac{\partial^2 \ddot{w}_0}{\partial y^2}) \\ + c_1 \Big[I_3 (\frac{\partial \ddot{u}_0}{\partial x} + \frac{\partial \ddot{v}_0}{\partial y} + J_4 (\frac{\partial \ddot{\phi}_x}{\partial x} + \frac{\partial \ddot{\phi}_y}{\partial y}) \Big] & & & & \\ \frac{\partial \bar{M}_{xx}}{\partial x} + \frac{\partial \bar{M}_{yy}}{\partial y} - \bar{Q}_x = J_1 \ddot{u}_0 + K_2 \ddot{\phi}_x - c_1 J_4 \frac{\partial \ddot{w}_0}{\partial x} & & \\ \frac{\partial \bar{M}_{xy}}{\partial x} + \frac{\partial M_{yy}}{\partial y} - \bar{Q}_y = J_1 \ddot{v}_0 + K_2 \ddot{\phi}_y - c_1 J_4 \frac{\partial \ddot{w}_0}{\partial y} & & \\ I_i = \sum_{k=1}^N \int_{z_k}^{z_{k+1}} \rho^{(k)}(z)^i dz & (i = 0, 1, 2, \cdots, 6) \\ J_i = I_i - c_1 I_{i+2}, K_2 = I_2 - 2c_1 I_4 + c_1^2 I_6, c_1 = \frac{4}{3h^2}, c_2 = 3c_1 \end{array}$$

Primary Variables:
$$U_{n}, U_{s}, W_{o}, \frac{\partial W_{o}}{\partial n}, \phi_{n}, \phi_{s}$$
 (3.2.15)
Secondary Variables: $N_{n}, N_{ns}, \overline{V}_{n}, P_{nn}, \overline{M}_{nn}, \overline{M}_{ns}$
where
 $\overline{V_{n}} \equiv c_{1} \left[\left(\frac{\partial P_{xx}}{\partial x} + \frac{\partial P_{xy}}{\partial y} \right) n_{x} + \left(\frac{\partial P_{xy}}{\partial x} + \frac{\partial P_{yy}}{\partial y} \right) n_{y} \right]$
 $-c_{1} \left[\left(I_{3}\ddot{u}_{0} + J_{4}\ddot{\phi}_{x} - c_{1}I_{6}\frac{\partial \ddot{w}_{0}}{\partial x} \right) n_{x} + \left(I_{3}\ddot{v}_{0} + J_{4}\ddot{\phi}_{y} - c_{1}I_{6}\frac{\partial \ddot{w}_{0}}{\partial y} \right) n_{y} \right]$
 $+ (\bar{Q}_{x}n_{x} + \bar{Q}_{y}n_{y}) + \mathcal{P}(w_{0}) + c_{1}\frac{\partial P_{ns}}{\partial s}$
 $\mathcal{P}(w_{0}) = \left(N_{xx}\frac{\partial w_{0}}{\partial x} + N_{xy}\frac{\partial w_{0}}{\partial y} \right) n_{x} + \left(N_{xy}\frac{\partial w_{0}}{\partial x} + N_{yy}\frac{\partial w_{0}}{\partial y} \right) n_{y}$

we can write:

$$\begin{cases} \{N\} \\ \{M\} \\ \{P\} \end{cases} = \begin{bmatrix} [A] & [B] & [E] \\ [B] & [D] & [F] \\ [E] & [F] & [H] \end{bmatrix} \begin{cases} \{\varepsilon^{(0)} \} \\ \{\varepsilon^{(1)} \} \\ \{\varepsilon^{(3)} \} \end{cases}$$

$$Constitutive equations of TSDT (aminats)$$

$$\begin{cases} \{Q\} \\ \{R\} \} = \begin{bmatrix} [A] & [D] \\ [D] & [F] \end{bmatrix} \begin{cases} \{\gamma^{(0)} \} \\ \{\gamma^{(2)} \} \end{cases}$$

$$(8.2-(7))$$

$$(A_{ij}, B_{ij}, D_{ij}, E_{ij}, F_{ij}, H_{ij}) = \sum_{k=1}^{N} \int_{z_k}^{z_{k+1}} \bar{Q}_{ij}^{(k)} (1, z, z^2, z^3, z^4, z^6) dz$$

matrices are of the order 3x3

$$(A_{ij}, D_{ij}, F_{ij}) = \sum_{k=1}^{N} \int_{z_k}^{z_{k+1}} \bar{Q}_{ij}^{(k)} (1, z^2, z^4) dz \qquad i, j \in \mathsf{4.5}$$

matrices are of the order 2x2

We have Known A, B and D matrices, but the additional stiffnes

coefficients are difined by:

$$E_{ij} = \frac{1}{4} \sum_{k=1}^{N} \bar{Q}_{ij}^{(k)} \left[(z_{k+1})^4 - (z_k)^4 \right]$$

$$F_{ij} = \frac{1}{5} \sum_{k=1}^{N} \bar{Q}_{ij}^{(k)} \left[(z_{k+1})^5 - (z_k)^5 \right]$$

$$H_{ij} = \frac{1}{7} \sum_{k=1}^{N} \bar{Q}_{ij}^{(k)} \left[(z_{k+1})^7 - (z_k)^7 \right]$$

In equations (8.2.13) by Considering C1=0 we will obtain the FSDT geverning equations.

8.3. Higher-order Laminate Stiffness characteristics
A simplified third-order theory may be deduced from the
general third-order theory presented here by omitting the higher-
order stress resultants (
$$P_{MR}$$
, P_{JY} , P_{NY}) but Keeping the higher-order
stress resultants (R_{R} , R_{Y}). The resulting theory is not consistent
in energy sense.

$$Q_{11} = \frac{E_1}{1 - \nu_{12}\nu_{21}}, \quad Q_{12} = \frac{\nu_{12}E_2}{1 - \nu_{12}\nu_{21}}, \quad Q_{22} = \frac{E_2}{1 - \nu_{12}\nu_{21}}$$

$$Q_{66} = G_{12}, \quad Q_{44} = G_{23}, \quad Q_{55} = G_{13}$$

I- Single-Layer Plates

Single Isotropic Layer

$$\begin{cases} N_{xx} \\ N_{yy} \\ N_{xy} \end{cases} = \begin{bmatrix} A_{11} & \nu A_{11} & 0 \\ \nu A_{11} & A_{11} & 0 \\ \nu A_{11} & A_{11} & 0 \\ 0 & 0 & \frac{1-\nu}{2} A_{11} \end{bmatrix} \begin{cases} \varepsilon_{0x}^{(0)} \\ \varepsilon_{yy}^{(0)} \\ \gamma_{xy}^{(0)} \end{cases}$$

$$\begin{cases} M_{xx} \\ M_{yy} \\ M_{xy} \end{cases} = \begin{bmatrix} D_{11} & \nu D_{11} & 0 \\ \nu D_{11} & D_{11} & 0 \\ 0 & 0 & \frac{1-\nu}{2} D_{11} \end{bmatrix} \begin{cases} \varepsilon_{1x}^{(1)} \\ \varepsilon_{yy}^{(1)} \\ \gamma_{xy}^{(1)} \end{cases} + \begin{bmatrix} F_{11} & \nu F_{11} & 0 \\ 0 & 0 & \frac{1-\nu}{2} F_{11} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(3)} \\ \varepsilon_{yy}^{(3)} \\ \gamma_{xy}^{(3)} \end{cases}$$

$$(11.3.4b)$$

$$\begin{cases} P_{xx} \\ P_{yy} \\ P_{xy} \end{cases} = \begin{bmatrix} F_{11} & \nu F_{11} & 0 \\ \nu F_{11} & F_{11} & 0 \\ 0 & 0 & \frac{1-\nu}{2} F_{11} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(1)} \\ \varepsilon_{yy}^{(1)} \\ \gamma_{xy}^{(1)} \end{cases} + \begin{bmatrix} H_{11} & \nu H_{11} & 0 \\ \nu H_{11} & H_{11} & 0 \\ 0 & 0 & \frac{1-\nu}{2} H_{11} \end{bmatrix} \begin{cases} \varepsilon_{yy}^{(3)} \\ \varepsilon_{yy}^{(3)} \\ \gamma_{xy}^{(3)} \end{cases}$$

$$\begin{cases} Q_{y} \\ Q_{x} \end{cases} = \frac{1-\nu}{2} \begin{bmatrix} A_{11} & 0 \\ 0 & A_{11} \end{bmatrix} \begin{cases} \gamma_{yz}^{(0)} \\ \gamma_{xz}^{(0)} \\ \gamma_{xz}^{(0)} \end{cases} + \frac{1-\nu}{2} \begin{bmatrix} D_{11} & 0 \\ 0 & D_{11} \end{bmatrix} \begin{cases} \gamma_{yz}^{(2)} \\ \gamma_{yz}^{(2)} \\ \gamma_{xz}^{(2)} \end{cases}$$

$$\end{cases}$$

(8.2-22)

Single Specially Orthotropic Layer

similar equations hold for N's and M's) (8.2-22) and

$$\begin{cases} P_{xx} \\ P_{yy} \\ P_{xy} \end{cases} = \frac{h^5}{80} \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(1)} \\ \varepsilon_{yy}^{(1)} \\ \gamma_{xy}^{(1)} \end{cases} + \frac{h^7}{448} \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(3)} \\ \varepsilon_{yy}^{(3)} \\ \gamma_{xy}^{(3)} \end{cases}$$

$$(11.3)$$

$$\begin{cases} R_y \\ R_x \end{cases} = \frac{h^3}{12} \begin{bmatrix} Q_{44} & 0 \\ 0 & Q_{55} \end{bmatrix} \begin{cases} \gamma_{yz}^{(0)} \\ \gamma_{xz}^{(0)} \end{cases} + \frac{h^5}{80} \begin{bmatrix} Q_{44} & 0 \\ 0 & Q_{55} \end{bmatrix} \begin{cases} \gamma_{yz}^{(2)} \\ \gamma_{xz}^{(2)} \end{cases}$$

$$(11.3)$$

(8.2-24)

(8.2-25)

Single Generally Orthotropic Layer

$$\begin{cases} P_{xx} \\ P_{yy} \\ P_{xy} \end{cases} = \begin{bmatrix} F_{11} & F_{12} & F_{16} \\ F_{12} & F_{22} & F_{26} \\ F_{16} & F_{26} & F_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(1)} \\ \varepsilon_{yy}^{(1)} \\ \gamma_{xy}^{(1)} \end{cases} + \begin{bmatrix} H_{11} & H_{12} & H_{16} \\ H_{12} & H_{22} & H_{26} \\ H_{16} & H_{26} & H_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(3)} \\ \varepsilon_{yy}^{(3)} \\ \gamma_{xy}^{(3)} \end{cases}$$
$$\begin{cases} R_y \\ R_x \end{cases} = \begin{bmatrix} D_{44} & D_{45} \\ D_{45} & D_{55} \end{bmatrix} \begin{cases} \gamma_{yz}^{(0)} \\ \gamma_{xz}^{(0)} \end{cases} + \begin{bmatrix} F_{44} & F_{45} \\ F_{45} & F_{55} \end{bmatrix} \begin{cases} \gamma_{yz}^{(2)} \\ \gamma_{xz}^{(2)} \end{cases}$$
higher-order thermal stress resultants for this case are given by

$$\begin{cases} P_{xx}^{T} \\ P_{yy}^{T} \\ P_{xy}^{T} \\ P_{xy}^{T} \end{cases} = \sum_{k=1}^{L} \int_{z_{k}}^{z_{k+1}} \begin{bmatrix} \bar{Q}_{11}^{k} & \bar{Q}_{12}^{k} & \bar{Q}_{16}^{k} \\ \bar{Q}_{12}^{k} & \bar{Q}_{22}^{k} & \bar{Q}_{26}^{k} \\ \bar{Q}_{16}^{k} & \bar{Q}_{26}^{k} & \bar{Q}_{66}^{k} \end{bmatrix}^{(k)} \begin{cases} \alpha_{xx} \\ \alpha_{yy} \\ 2\alpha_{xy} \end{cases}^{(k)} \Delta T z^{3} dz$$

I Symmetric Laminates

similar equations hold for N's and M's) (8.2-22)

Symmetric Laminates with Multiple Isotropic Layers

$$\begin{cases} P_{xx} \\ P_{yy} \\ P_{xy} \end{cases} = \begin{bmatrix} F_{11} & F_{12} & 0 \\ F_{12} & F_{11} & 0 \\ 0 & 0 & F_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(1)} \\ \varepsilon_{yy}^{(1)} \\ \gamma_{xy}^{(1)} \end{cases} + \begin{bmatrix} H_{11} & H_{12} & 0 \\ H_{12} & H_{11} & 0 \\ 0 & 0 & H_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(3)} \\ \varepsilon_{yy}^{(3)} \\ \gamma_{xy}^{(3)} \end{cases}$$

$$\begin{cases} R_y \\ R_x \end{cases} = \begin{bmatrix} D_{44} & 0 \\ 0 & D_{55} \end{bmatrix} \begin{cases} \gamma_{yz}^{(0)} \\ \gamma_{xz}^{(0)} \end{cases} + \begin{bmatrix} F_{44} & 0 \\ 0 & F_{55} \end{bmatrix} \begin{cases} \gamma_{yz}^{(2)} \\ \gamma_{xz}^{(2)} \end{cases}$$

II Antisymmetric Laminates

$$\begin{cases} P_{xx} \\ P_{yy} \\ P_{xy} \end{cases} = \begin{bmatrix} E_{11} & E_{12} & E_{16} \\ E_{12} & E_{22} & E_{26} \\ E_{16} & E_{26} & E_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(0)} \\ \varepsilon_{yy}^{(0)} \\ \varepsilon_{xy}^{(0)} \end{cases} + \begin{bmatrix} F_{11} & F_{12} & 0 \\ F_{12} & F_{22} & 0 \\ 0 & 0 & F_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(1)} \\ \varepsilon_{yy}^{(1)} \\ \varepsilon_{xy}^{(1)} \end{cases} + \begin{bmatrix} H_{11} & H_{12} & 0 \\ H_{12} & H_{22} & 0 \\ 0 & 0 & H_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx}^{(3)} \\ \varepsilon_{xy}^{(3)} \\ \varepsilon_{xy}^{(3)} \end{cases} + \begin{bmatrix} P_{44} & 0 \\ 0 & P_{55} \end{bmatrix} \begin{cases} \varepsilon_{yz}^{(2)} \\ \varepsilon_{xz}^{(2)} \end{cases} + \begin{bmatrix} F_{44} & 0 \\ 0 & F_{55} \end{bmatrix} \begin{cases} \varepsilon_{xz}^{(2)} \\ \varepsilon_{xz}^{(2)} \end{cases} \end{cases}$$

8-4 The Navier Solutions

In fact, it is possible to develop the Navier Solutions of simply supported antisymmetric cross-ply and angle-ply laminates using the third-order theory. For antisimmetric cross-ply laminates the following stiffnesses are zero: (8.4-1) $A_{16} = A_{26} = A_{45} = B_{16} = B_{26} = D_{16} = D_{26} = I_1 = 0$ $E_{16} = E_{26} = F_{16} = F_{26} = H_{16} = H_{26} = D_{45} = F_{45} = I_3 = I_5 = I_7 = 0$ For antisimmetric angle-ply laminates the following stiffnesses are zero $A_{16} = A_{26} = A_{45} = B_{11} = B_{12} = B_{22} = B_{66} = D_{16} = D_{26} = I_1 = 0$ $E_{11} = E_{12} = E_{22} = E_{66} = F_{16} = F_{26} = H_{16} = H_{26} = D_{45} = F_{45} = I_3 = I_5 = I_7 = 0$ (8.4-2)

