Composites
Lesson 25
chapter VIII Third-order Theory of Laminated Composite Plates
8.1- Introduction

Higher-order theories can represent the Kinematics better, may not require shear correction factors, and can yield more accurate interlaminar stress distributions. However, they involve higher-order stress resultants that are difficult to interpret physically and require considerably more computational effort. Therefore, such theories should be used only when necessary.
The reason for expanding the displacements up to the cubic term in the thickness coordinate is to have
quadratic variation of the transverse shear strains and transverse shear stresses through each layer.

8.2 A Third-order Plate Theory
8.2.1 Displacement Field

$$
\begin{gather*}
u=u_{0}+z \phi_{x}+z^{2} \theta_{x}+z^{3} \lambda_{x} \\
v=v_{0}+z \phi_{y}+z^{2} \theta_{y}+z^{3} \lambda_{y} \quad(8.2-1) \tag{8.2-1}\\
w=w_{0} \\
u_{0}=u(x, y, 0, t), v_{0}=v(x, y, 0, t), w_{0}=w(x, y, 0, t) \\
\phi_{x}=\left(\frac{\partial u}{\partial z}\right)_{z=0}, \phi_{y}=\left(\frac{\partial v}{\partial z}\right)_{z=0}, 2 \theta_{x}=\left(\frac{\partial^{2} u}{\partial z^{2}}\right)_{z=0} \quad(8.2 \tag{8.2-2}\\
, 2 \theta_{y}=\left(\frac{\partial^{2} v}{\partial z^{2}}\right)_{z=0}, 6 \lambda_{x}=\left(\frac{\partial^{3} u}{\partial z^{3}}\right)_{z=0}, 6 \lambda_{y}=\left(\frac{\partial^{3} v}{\partial z^{3}}\right)_{z=0}
\end{gather*}
$$

Suppose that we wish to impose traction -free boundary conditions on the tap and bottom faces of the laminate.

$$
\begin{aligned}
& \sigma_{x z}\left(x, y, \pm \frac{h}{2}, t\right)=0, \sigma_{y z}\left(x, y, \pm \frac{h}{2}, t\right)=0 \quad(8.2 .3) \\
& \Rightarrow \quad \begin{array}{l}
0=\sigma_{x z}(x, y, \pm h / 2, t)=Q_{55} \gamma_{x z}(x, y, \pm h / 2, t)+Q_{45} \gamma_{y z}(x, y, \pm h / 2, t), \quad \text { (8.2.4) } \\
0=\sigma_{y z}(x, y, \pm h / 2, t)=Q_{45} \gamma_{x z}(x, y, \pm h / 2, t)+Q_{44} \gamma_{y z}(x, y, \pm h / 2, t)
\end{array} \\
& \phi_{x}+\frac{\partial w_{0}}{\partial x}+\left(-h \theta_{x}+\frac{3 h^{2}}{4} \lambda_{x}\right)=0, \quad \phi_{x}+\frac{\partial w_{0}}{\partial x}+\left(h \theta_{x}+\frac{3 h^{2}}{4} \lambda_{x}\right)=0 \\
& \phi_{y}+\frac{\partial w_{0}}{\partial y}+\left(-h \theta_{y}+\frac{3 h^{2}}{4} \lambda_{y}\right)=0, \quad \phi_{y}+\frac{\partial w_{0}}{\partial y}+\left(h \theta_{y}+\frac{3 h^{2}}{4} \lambda_{y}\right)=0
\end{aligned}
$$

or

$$
\lambda_{x}=-\frac{4}{3 h^{2}}\left(\phi_{x}+\frac{\partial w_{0}}{\partial x}\right), \quad \theta_{x}=0 ; \quad \lambda_{y}=-\frac{4}{3 h^{2}}\left(\phi_{y}+\frac{\partial w_{0}}{\partial y}\right), \quad \theta_{y}=0
$$

$u(x, y, z, t)=u_{0}(x, y, t)+z \phi_{x}(x, y, t)-\frac{4}{3 h^{2}} z^{3}\left(\phi_{x}+\frac{\partial w_{0}}{\partial x}\right)$
$v(x, y, z, t)=v_{0}(x, y, t)+z \phi_{y}(x, y, t)-\frac{4}{3 h^{2}} z^{3}\left(\phi_{y}+\frac{\partial w_{0}}{\partial y}\right)$
$w(x, y, z, t)=w_{0}(x, y, t)$
:---
8.2-2 strains $\quad \widetilde{C}_{1}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{l}
\varepsilon_{x y}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\}+z\left\{\begin{array}{l}
\varepsilon_{x,}^{(1)} \\
\varepsilon_{y(1)}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\}+z^{3}\left\{\begin{array}{l}
\varepsilon_{x y}^{(3)} \\
\varepsilon_{y y}^{(3)} \\
\gamma_{x y}^{(3)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
\gamma_{y z} \\
\gamma_{x z}
\end{array}\right\}=\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}+z^{2}\left\{\begin{array}{l}
\gamma_{y_{z}^{(2)}}^{(2)} \\
\gamma_{x z}^{(2)}
\end{array}\right\}
\end{aligned}
$$

Consider $C_{2}=3 C_{1}, C_{1}=\frac{4}{3 h^{2}}$ then

$$
\begin{aligned}
& \left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u_{0}}{\partial x}+\frac{1}{2}\left(\frac{\partial w_{0}}{\partial x}\right)^{2} \\
\frac{\partial v_{0}}{\partial y}+\frac{1}{2}\left(\frac{\partial w_{0}}{\partial y}\right)^{2} \\
\frac{\partial u_{0}}{\partial y}+\frac{\partial v_{0}}{\partial x}+\frac{\partial w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y}
\end{array}\right\} \\
& \left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial \phi_{x}}{\partial x} \\
\frac{\partial \phi_{y}}{\partial y} \\
\frac{\partial \phi_{x}}{\partial y}+\frac{\partial \phi_{y}}{\partial x}
\end{array}\right\}, \quad\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}=\left\{\begin{array}{l}
\phi_{y}+\frac{\partial w_{0}}{\partial y} \\
\phi_{x}+\frac{\partial w_{0}}{\partial x}
\end{array}\right\} \\
& \left\{\begin{array}{l}
\varepsilon_{x x}^{(3)} \\
\varepsilon_{y y}^{(3)} \\
\gamma_{x y}^{(3)}
\end{array}\right\}=-c_{1}\left\{\begin{array}{c}
\frac{\partial \phi_{x}}{\partial x}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \\
\frac{\partial \phi_{y}}{\partial y}+\frac{\partial^{2} w_{0}}{\partial y^{2}} \\
\frac{\partial \phi_{x}}{\partial y}+\frac{\partial \phi_{y}}{\partial x}+2 \frac{\partial^{2} w_{0}}{\partial x \partial y}
\end{array}\right\}, \quad\left\{\begin{array}{l}
\gamma_{y z}^{(2)} \\
\gamma_{x z}^{(2)}
\end{array}\right\}=-c_{2}\left\{\begin{array}{l}
\phi_{y}+\frac{\partial w_{0}}{\partial y} \\
\phi_{x}+\frac{\partial w_{0}}{\partial x}
\end{array}\right\}
\end{aligned}
$$

8.2-3 Equations of Motion

$$
\begin{aligned}
\delta U= & \int_{\Omega_{0}}\left\{\int _ { - \frac { h } { 2 } } ^ { \frac { h } { 2 } } \left[\sigma_{x x}\left(\delta \varepsilon_{x x}^{(0)}+z \delta \varepsilon_{x x}^{(1)}-c_{1} z^{3} \delta \varepsilon_{x x}^{(3)}\right)\right.\right. \\
& +\sigma_{y y}\left(\delta \varepsilon_{y y}^{(0)}+z \delta \varepsilon_{y y}^{(1)}-c_{1} z^{3} \varepsilon_{y y}^{(3)}\right)+\sigma_{x y}\left(\delta \gamma_{x y}^{(0)}+z \delta \gamma_{x y}^{(1)}-c_{2} z^{3} \delta \gamma_{x y}^{(3)}\right) \\
& \left.\left.+\sigma_{x z}\left(\delta \gamma_{x z}^{(0)}+z^{2} \delta \gamma_{x z}^{(2)}\right)+\sigma_{y z}\left(\delta \gamma_{y z}^{(0)}+z^{2} \delta \gamma_{y z}^{(2)}\right)\right] d z\right\} d x d y \\
= & \int_{\Omega_{0}}\left(N_{x x} \delta \varepsilon_{x x}^{(0)}+M_{x x} \delta \varepsilon_{x x}^{(1)}-c_{1} P_{x x} \delta \varepsilon_{x x}^{(3)}+N_{y y} \delta \varepsilon_{y y}^{(0)}+M_{y y} \delta \varepsilon_{y y}^{(1)}-c_{1} P_{y y} \delta \varepsilon_{y y}^{(3)}\right. \\
& +N_{x y} \delta \gamma_{x y}^{(0)}+M_{x y} \delta \gamma_{x y}^{(1)}-c_{1} P_{x y} \delta \gamma_{x y}^{(3)} \\
& \left.+Q_{x} \delta \gamma_{x z}^{(0)}-c_{2} R_{x} \delta \gamma_{x z}^{(\mathbf{2})}+Q_{y} \delta \gamma_{y z}^{(0)}-c_{2} R_{y} \delta \gamma_{y z}^{(\mathbf{Z})}\right) d x d y
\end{aligned}
$$

$$
\begin{aligned}
\delta V= & -\int_{\Omega_{0}}\left[q_{b}(x, y) \delta w\left(x, y,-\frac{h}{2}\right)+q_{t}(x, y) \delta w\left(x, y, \frac{h}{2}\right)\right] d x d y \\
- & \int_{\Gamma} \int_{-\frac{h}{2}}^{\frac{h}{2}}\left[\hat{\sigma}_{n n}\left(\delta u_{n}+z \delta \phi_{n}-c_{1} z^{3} \delta \varphi_{n}\right)\right. \\
& \left.+\hat{\sigma}_{n s}\left(\delta u_{s}+z \delta \phi_{s}-c_{1} z^{3} \delta \varphi_{n s}\right)+\hat{\sigma}_{n z} \delta w_{0}\right] d z d \Gamma \\
=- & \int_{\Omega_{0}} q \delta w_{0} d x d y-\int_{\Gamma}\left(\hat{N}_{n n} \delta u_{n}+\hat{M}_{n n} \delta \phi_{n}-c_{1} \hat{P}_{n n} \delta \varphi_{n}\right. \\
& \left.+\hat{N}_{n s} \delta u_{s}+\hat{M}_{n s} \delta \phi_{s}-c_{1} \hat{P}_{n s} \delta \varphi_{n s}+\hat{Q}_{n} \delta w_{0}\right) d \Gamma
\end{aligned}
$$

$$
\begin{aligned}
\delta K= & \int_{\Omega_{0}} \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho_{0}\left[\left(\dot{u}_{0}+z \dot{\phi}_{x}-c_{1} z^{3} \dot{\varphi}_{x}\right)\left(\delta \dot{u}_{0}+z \delta \dot{\phi}_{x}-c_{1} z^{3} \delta \dot{\varphi}_{x}\right)\right. \\
& \left.\quad+\left(\dot{v}_{0}+z \dot{\phi}_{y}-c_{1} z^{3} \dot{\varphi}_{y}\right)\left(\delta \dot{v}_{0}+z \delta \dot{\phi}_{y}-c_{1} z^{3} \delta \dot{\varphi}_{y}\right)+\dot{w}_{0} \delta \dot{w}_{0}\right] d v \\
=\int_{\Omega_{0}} & {\left[\left(I_{0} \dot{u}_{0}+I_{1} \dot{\phi}_{x}-c_{1} I_{3} \dot{\varphi}_{x}\right) \delta \dot{u}_{0}+\left(I_{1} \dot{u}_{0}+I_{2} \dot{\phi}_{x}-c_{1} I_{4} \dot{\varphi}_{x}\right) \delta \dot{\phi}_{x}\right.} \\
& \quad-c_{1}\left(I_{3} \dot{u}_{0}+I_{4} \dot{\phi}_{x}-c_{1} I_{6} \dot{\varphi}_{x}\right) \delta \dot{\varphi}_{x}+\left(I_{0} \dot{v}_{0}+I_{1} \dot{\phi}_{y}-c_{1} I_{3} \dot{\varphi}_{y}\right) \delta \dot{v}_{0} \\
& \left.+\left(I_{1} \dot{v}_{0}+I_{2} \dot{\phi}_{y}-c_{1} I_{4} \dot{\varphi}_{y}\right) \delta \dot{\phi}_{y}-c_{1}\left(I_{3} \dot{u}_{0}+I_{4} \dot{\phi}_{y}-c_{1} I_{6} \dot{\varphi}_{y}\right) \delta \dot{\varphi}_{y}\right] d x d y
\end{aligned}
$$

whir Ω_{0} denotes the midplane of the laminate, and

$$
\begin{gathered}
\left\{\begin{array}{l}
N_{\alpha \beta} \\
M_{\alpha \beta} \\
P_{\alpha \beta}
\end{array}\right\}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\alpha \beta}\left\{\begin{array}{c}
1 \\
z \\
z^{3}
\end{array}\right\} d z, \quad\left\{\begin{array}{c}
Q_{\alpha} \\
R_{\alpha}
\end{array}\right\}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\alpha z}\left\{\begin{array}{c}
1 \\
z^{2}
\end{array}\right\} d z \\
I_{i}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \rho_{0}(z)^{i} d z \quad(i=0,1,2, \cdots, 6)
\end{gathered}
$$

By using above equations the equations of motion can be obtain:

$$
\begin{array}{ll}
\frac{\partial N_{x x}}{\partial x}+\frac{\partial N_{x y}}{\partial y}=I_{0} \ddot{u}_{0}+J_{1} \ddot{\phi}_{x}-c_{1} I_{3} \frac{\partial \ddot{w}_{0}}{\partial x} & a \\
\frac{\partial N_{x y}}{\partial x}+\frac{\partial N_{y y}}{\partial y}=I_{0} \ddot{0}_{0}+J_{1} \ddot{\phi}_{y}-c_{1} I_{3} \frac{\partial \ddot{w}_{0}}{\partial y} & b \\
\frac{\partial \bar{Q}_{x}}{\partial x}+\frac{\partial \bar{Q}_{y}}{\partial y}+\frac{\partial}{\partial x}\left(N_{x x} \frac{\partial w_{0}}{\partial x}+N_{x y} \frac{\partial w_{0}}{\partial y}\right)+\frac{\partial}{\partial y}\left(N_{x y} \frac{\partial w_{0}}{\partial x}+N_{y y} \frac{\partial w_{0}}{\partial y}\right) & \tag{8.2-13}\\
+c_{1}\left(\frac{\partial^{2} P_{x x}}{\partial x^{2}}+2 \frac{\partial^{2} P_{x y}}{\partial x \partial y}+\frac{\partial^{2} P_{y y}}{\partial y^{2}}\right)+q=I_{0} \ddot{w}_{0}-c_{1}^{2} I_{6}\left(\frac{\partial^{2} \ddot{w}_{0}}{\partial x^{2}}+\frac{\partial^{2} \ddot{w}_{0}}{\partial y^{2}}\right) & C \\
+c_{1}\left[I_{3}\left(\frac{\partial \ddot{u}_{0}}{\partial x}+\frac{\partial \ddot{v}_{0}}{\partial y}\right)+J_{4}\left(\frac{\partial \ddot{\phi}_{x}}{\partial x}+\frac{\partial \ddot{\phi}_{y}}{\partial y}\right)\right] & d \\
\frac{\partial \bar{M}_{x x}}{\partial x}+\frac{\partial \bar{M}_{x y}}{\partial y}-\bar{Q}_{x}=J_{1} \ddot{u}_{0}+K_{2} \ddot{\phi}_{x}-c_{1} J_{4} \frac{\partial \ddot{w}_{0}}{\partial x} & C
\end{array}
$$

where

$$
\begin{gather*}
\bar{M}_{\alpha \beta}=M_{\alpha \beta}-c_{1} P_{\alpha \beta}(\alpha, \beta=1,2,6) ; \quad \bar{Q}_{\alpha}=Q_{\alpha}-c_{2} R_{\alpha}(\alpha=4,5) \\
I_{i}=\sum_{k=1}^{N} \int_{z_{k}}^{z_{k+1}} \rho^{(k)}(z)^{i} d z \quad(i=0,1,2, \cdots, 6) \tag{8.2-14}\\
J_{i}=I_{i}-c_{1} I_{i+2}, K_{2}=I_{2}-2 c_{1} I_{4}+c_{1}^{2} I_{6}, \quad c_{1}=\frac{4}{3 h^{2}}, \quad c_{2}=3 c_{1}
\end{gather*}
$$

primary Variables: $u_{n}, u_{s}, w_{0}, \frac{\partial w_{0}}{\partial n}, \phi_{n}, \phi_{s}$
secondary variables: $N_{n}, N_{n s}, \bar{V}_{n}, P_{n n}, \bar{M}_{n n}, \bar{M}_{n s}$
where

$$
\begin{align*}
\bar{V}_{n} & \equiv c_{1}\left[\left(\frac{\partial P_{x x}}{\partial x}+\frac{\partial P_{x y}}{\partial y}\right) n_{x}+\left(\frac{\partial P_{x y}}{\partial x}+\frac{\partial P_{y y}}{\partial y}\right) n_{y}\right] \\
& -c_{1}\left[\left(I_{3} \ddot{u}_{0}+J_{4} \ddot{\phi}_{x}-c_{1} I_{6} \frac{\partial \ddot{w}_{0}}{\partial x}\right) n_{x}+\left(I_{3} \dot{v}_{0}+J_{4} \ddot{\phi}_{y}-c_{1} I_{6} \frac{\partial \ddot{w}_{0}}{\partial y}\right) n_{y}\right] \\
& +\left(\bar{Q}_{x} n_{x}+\bar{Q}_{y} n_{y}\right)+\mathcal{P}\left(w_{0}\right)+c_{1} \frac{\partial P_{n s}}{\partial s} \\
\mathcal{P}\left(w_{0}\right) & =\left(N_{x x} \frac{\partial w_{0}}{\partial x}+N_{x y} \frac{\partial w_{0}}{\partial y}\right) n_{x}+\left(N_{x y} \frac{\partial w_{0}}{\partial x}+N_{y y} \frac{\partial w_{0}}{\partial y}\right) n_{y}
\end{align*}
$$

we can write:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\{N\} \\
\{M\} \\
\{P\}
\end{array}\right\}=\left[\begin{array}{lll}
{[A]} & {[B]} & {[E]} \\
{[B]} & {[D]} & {[F]} \\
{[E]} & {[F]} & {[H]}
\end{array}\right]\left\{\begin{array}{c}
\left\{\varepsilon^{(0)}\right\} \\
\left\{\varepsilon^{(1)}\right\} \\
\left\{\varepsilon^{(3)}\right\}
\end{array}\right\} \\
& \left\{\begin{array}{c}
\{Q\} \\
\{R\}
\end{array}\right\}=\left[\begin{array}{ll}
{[A]} & {[D]} \\
{[D]} & {[F]}
\end{array}\right]\left\{\begin{array}{l}
\left\{\gamma^{(0)}\right\} \\
\left\{\gamma^{(2)}\right\}
\end{array}\right\}
\end{aligned}
$$

Constitutive equations of TSDT laminats (8.2.17)

$$
\left.\left(A_{i j}, B_{i j}, D_{i j}, E_{i j}, F_{i j}, H_{i j}\right)=\sum_{k=1}^{N} \int_{z_{k}}^{z_{k+1}} \bar{Q}_{i j}^{(k)}\left(1, z, z^{2}, z^{3}, z^{4}, z^{6}\right) d z \quad i_{,}\right]=1,2,6 \quad \text { (8,2 - 18) }
$$

matrices are of the order 3×3

$$
\begin{equation*}
\left.\left(A_{i j}, D_{i j}, F_{i j}\right)=\sum_{k=1}^{N} \int_{z_{k}}^{z_{k+1}} \bar{Q}_{i j}^{(k)}\left(1, z^{2}, z^{4}\right) d z \quad \text { i, }\right\}=4,5 \tag{8.2.19}
\end{equation*}
$$

matrices are of the order 2×2
We have known A, B and D matrices, but the additional stiff es coefficients are difined by:

$$
\begin{aligned}
E_{i j} & =\frac{1}{4} \sum_{k=1}^{N} \bar{Q}_{i j}^{(k)}\left[\left(z_{k+1}\right)^{4}-\left(z_{k}\right)^{4}\right] \\
F_{i j} & =\frac{1}{5} \sum_{k=1}^{N} \bar{Q}_{i j}^{(k)}\left[\left(z_{k+1}\right)^{5}-\left(z_{k}\right)^{5}\right] \\
H_{i j} & =\frac{1}{7} \sum_{k=1}^{N} \bar{Q}_{i j}^{(k)}\left[\left(z_{k+1}\right)^{7}-\left(z_{k}\right)^{7}\right]
\end{aligned}
$$

In equations $(8.2 .13)$ by considering $C_{1}=0$ we will obtain the F-SDT geverning equations.
8.3. Higher-order Laminate Stiffness characteristics A simplified third-arder theory may be deduced from the general third-crder theory presented here by omitting the higher order stress resultants $\left(P_{x_{x}}, P_{J y}, P_{x y}\right)$ but Keeping the higher-arder stress resultants $\left(R_{x}, R_{y}\right)$. The resulting theory is not consistent in energy sense.

$$
\begin{aligned}
& Q_{11}=\frac{E_{1}}{1-\nu_{12} \nu_{21}}, \quad Q_{12}=\frac{\nu_{12} E_{2}}{1-\nu_{12} \nu_{21}}, \quad Q_{22}=\frac{E_{2}}{1-\nu_{12} \nu_{21}} \\
& Q_{66}=G_{12}, Q_{44}=G_{23}, Q_{55}=G_{13}
\end{aligned}
$$

I. Single-Layer Plates

Single Isotropic Layer

$$
(8.2-22)
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
A_{11} & \nu A_{11} & 0 \\
\nu A_{11} & A_{11} & 0 \\
0 & 0 & \frac{1-\nu}{2} A_{11}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
M_{x x} \\
M_{y y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
D_{11} & \nu D_{11} & 0 \\
\nu D_{11} & D_{11} & 0 \\
0 & 0 & \frac{1-\nu}{2} D_{11}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\}+\left[\begin{array}{ccc}
F_{11} & \nu F_{11} & 0 \\
\nu F_{11} & F_{11} & 0 \\
0 & 0 & \frac{1-\nu}{2} F_{11}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(3)} \\
\varepsilon_{y y}^{(3)} \\
\gamma_{x y}^{(3)}
\end{array}\right\} \\
& \text { (11.3.4b) } \\
& \left\{\begin{array}{l}
P_{x x} \\
P_{y y} \\
P_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
F_{11} & \nu F_{11} & 0 \\
\nu F_{11} & F_{11} & 0 \\
0 & 0 & \frac{1-\nu}{2} F_{11}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
(1) \\
\gamma_{x y}
\end{array}\right\}+\left[\begin{array}{ccc}
H_{11} & \nu H_{11} & 0 \\
\nu H_{11} & H_{11} & 0 \\
0 & 0 & \frac{1-\nu}{2} H_{11}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x x}^{(3)} \\
\varepsilon_{y y}^{(3)} \\
(3) \\
\gamma_{x y}^{(3)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
Q_{y} \\
Q_{x}
\end{array}\right\}=\frac{1-\nu}{2}\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{11}
\end{array}\right]\left\{\begin{array}{c}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}+\frac{1-\nu}{2}\left[\begin{array}{cc}
D_{11} & 0 \\
0 & D_{11}
\end{array}\right]\left\{\begin{array}{c}
\gamma_{y z}^{(2)} \\
(2) \\
\gamma_{x z}
\end{array}\right\} \\
& \left\{\begin{array}{l}
R_{y} \\
R_{x}
\end{array}\right\}=\frac{1-\nu}{2}\left[\begin{array}{cc}
D_{11} & 0 \\
0 & D_{11}
\end{array}\right]\left\{\begin{array}{c}
\gamma_{y z}^{(0)} \\
(0) \\
\gamma_{x z}
\end{array}\right\}+\frac{1-\nu}{2}\left[\begin{array}{cc}
F_{11} & 0 \\
0 & F_{11}
\end{array}\right]\left\{\begin{array}{c}
\gamma_{y z}^{(2)} \\
(2) \\
\gamma_{x z}
\end{array}\right\}
\end{aligned}
$$

Single Specially Orthotropic Layer
similar equations hold for N 's and M 's) $(8.2-22)$ and

$$
\begin{align*}
& \left\{\begin{array}{l}
P_{x x} \\
P_{y y} \\
P_{x y}
\end{array}\right\}=\frac{h^{5}}{80}\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\}+\frac{h^{7}}{448}\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(3)} \\
\varepsilon_{y y}^{(3)} \\
\gamma_{x y}^{(3)}
\end{array}\right\} \tag{8.2.23}\\
& \left\{\begin{array}{l}
R_{y} \\
R_{x}
\end{array}\right\}=\frac{h^{3}}{12}\left[\begin{array}{cc}
Q_{44} & 0 \\
0 & Q_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}+\frac{h^{5}}{80}\left[\begin{array}{cc}
Q_{44} & 0 \\
0 & Q_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(2)} \\
\gamma_{x z}^{(2)}
\end{array}\right\}
\end{align*}
$$

Single Generally Orthotropic Layer

$$
\begin{align*}
& \left\{\begin{array}{l}
P_{x x} \\
P_{y y} \\
P_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
F_{11} & F_{12} & F_{16} \\
F_{12} & F_{22} & F_{26} \\
F_{16} & F_{26} & F_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\}+\left[\begin{array}{lll}
H_{11} & H_{12} & H_{16} \\
H_{12} & H_{22} & H_{26} \\
H_{16} & H_{26} & H_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(3)} \\
\varepsilon_{y y}^{(3)} \\
\gamma_{x y}^{(3)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
R_{y} \\
R_{x}
\end{array}\right\}=\left[\begin{array}{ll}
D_{44} & D_{45} \\
D_{45} & D_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}+\left[\begin{array}{ll}
F_{44} & F_{45} \\
F_{45} & F_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(2)} \\
\gamma_{x z}^{(2)}
\end{array}\right\}
\end{align*}
$$

higher-order thermal stress resultants for this case are given by

$$
\left\{\begin{array}{l}
P_{x x}^{T} \tag{8.2-25}\\
P_{y y}^{T} \\
P_{x y}^{T}
\end{array}\right\}=\sum_{k=1}^{L} \int_{z_{k}}^{z_{k+1}}\left[\begin{array}{lll}
\bar{Q}_{11}^{k} & \bar{Q}_{12}^{k} & \bar{Q}_{16}^{k} \\
\bar{Q}_{12}^{k} & \bar{Q}_{22}^{k} & \bar{Q}_{26}^{k} \\
\bar{Q}_{16}^{k} & \bar{Q}_{26}^{k} & \bar{Q}_{66}^{k}
\end{array}\right]^{(k)}\left\{\begin{array}{c}
\alpha_{x x} \\
\alpha_{y y} \\
2 \alpha_{x y}
\end{array}\right\}^{(k)} \Delta T z^{3} d z
$$

(1) Symmetric Laminates
similar equations hold for N 's and M 's) (8.2-22)
Symmetric Laminates with Multiple Isotropic Layers

$$
\begin{aligned}
& \left\{\begin{array}{l}
P_{x x} \\
P_{y y} \\
P_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
F_{11} & F_{12} & 0 \\
F_{12} & F_{11} & 0 \\
0 & 0 & F_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\}+\left[\begin{array}{ccc}
H_{11} & H_{12} & 0 \\
H_{12} & H_{11} & 0 \\
0 & 0 & H_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(3)} \\
\varepsilon_{y y}^{(3)} \\
\gamma_{x y}^{(3)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
R_{y} \\
R_{x}
\end{array}\right\}=\left[\begin{array}{cc}
D_{44} & 0 \\
0 & D_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}+\left[\begin{array}{cc}
F_{44} & 0 \\
0 & F_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(2)} \\
\gamma_{x z}^{(2)}
\end{array}\right\}
\end{aligned}
$$

Antisymmetric Laminates

$$
\begin{align*}
& F_{16}=F_{26}=H_{16}=H_{26}=0 \quad \text { \& } \quad B_{i j}, F_{i j} \neq o \\
&\left\{\begin{array}{l}
P_{x x} \\
P_{y y} \\
P_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
E_{11} & E_{12} & E_{16} \\
E_{12} & E_{22} & E_{26} \\
E_{16} & E_{26} & E_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\varepsilon_{x y}^{(0)}
\end{array}\right\}+\left[\begin{array}{ccc}
F_{11} & F_{12} & 0 \\
F_{12} & F_{22} & 0 \\
0 & 0 & F_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\varepsilon_{x y}^{(1)}
\end{array}\right\} \\
&+\left[\begin{array}{ccc}
H_{11} & H_{12} & 0 \\
H_{12} & H_{22} & 0 \\
0 & 0 & H_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(3)} \\
\varepsilon_{y y}^{(3)} \\
\varepsilon_{x y}^{(3)}
\end{array}\right\} \\
&\left\{\begin{array}{l}
R_{y} \\
R_{x}
\end{array}\right\}= {\left[\begin{array}{cc}
D_{44} & 0 \\
0 & D_{55}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{y z}^{(0)} \\
\varepsilon_{x z}^{(0)}
\end{array}\right\}+\left[\begin{array}{cc}
F_{44} & 0 \\
0 & F_{55}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{y z}^{(2)} \\
\varepsilon_{x z}^{(2)}
\end{array}\right\} }
\end{align*}
$$

8.4 The Navier Solutions

In fact, it is possible to develop the Navier solutions of simply supportal antisymmetric crass-ply and angle-ply laminates using the third-order theory. For antisimmetric cross-ply laminates the following stiffnesses are zero:

$$
\begin{align*}
& A_{16}=A_{26}=A_{45}=B_{16}=B_{26}=D_{16}=D_{26}=I_{1}=0 \tag{8.4-1}\\
& E_{16}=E_{26}=F_{16}=F_{26}=H_{16}=H_{26}=D_{45}=F_{45}=I_{3}=I_{5}=I_{7}=0
\end{align*}
$$

For antisimmetric angle -ply laminates the following stiffnesses are zero

$$
\begin{aligned}
& A_{16}=A_{26}=A_{45}=B_{11}=B_{12}=B_{22}=B_{66}=D_{16}=D_{26}=I_{1}=0 \\
& E_{11}=E_{12}=E_{22}=E_{66}=F_{16}=F_{26}=H_{16}=H_{26}=D_{45}=F_{45}=I_{3}=I_{5}=I_{7}=0 \\
&(8.4-2)
\end{aligned}
$$

For this approach the boundary conditions can be SS-I or SS-2:

