Let us denote the first expression in (II) by

$$
\begin{equation*}
\frac{d w_{0}^{b}}{d x}=\frac{F_{0} b a^{2}}{16 E_{x}^{b} I_{y}}\left[1-4\left(\frac{x}{a}\right)^{2}\right]=-\phi_{x} \tag{XII}
\end{equation*}
$$

From (7.3-15) we can say:

$$
\begin{align*}
& w_{0}=w_{0}^{b}+w_{0}^{s} \longrightarrow \frac{d w_{0}}{d x}=\frac{d w_{0}^{b}}{d x}+\frac{d w_{0}^{s}}{d x} \tag{IV}\\
& \left.\begin{array}{rl}
\xrightarrow[\text { V. }]{\longrightarrow} \frac{d w_{0}^{s}}{d x} & =\frac{d w_{0}}{d x}-\frac{d w_{0}^{b}}{d x}=\frac{d w_{0}}{d x}+\phi_{r} \\
\text { we knew }
\end{array}\right\} \Rightarrow \frac{d w_{0}^{s}}{d x}=\gamma_{x z}=2 \varepsilon_{x z}=\frac{\partial w_{0}}{\partial x}+\phi_{x} \\
& \left.\Pi \Rightarrow \quad \frac{d w_{0}}{d x}\right|_{x=a / 2}=\frac{F_{0} b}{2 K G_{x z}^{b} b h} \\
& \left.\frac{d w_{0}^{b}}{d x}\right|_{x=a / 2}=-\phi_{x}\left(\frac{a}{2}\right)=0
\end{align*}
$$

Note that, in contrast to the classical beam theory, the slope $\frac{d w_{0}}{d x}$ at the center of the beam in the Timoshenko beam theory is nonzero. However $\frac{d w_{0}^{b}}{d x}=-\phi_{x}$ is Zero at $x=\frac{a}{2}$.

Integrating (II) with respect to x, we arrive at the expression:

$$
\left.W_{0}(x)=\frac{F_{0} b a^{3}}{48 E_{x}^{b} F_{y}}\left[3\left(\frac{x}{a}\right)-4\left(\frac{x}{a}\right)^{3}\right]\right]+\frac{F_{0} b a}{2 K G_{x z}^{b} b h}\left(\frac{x}{a}\right)
$$

The maximum deflection occurs at $x=\frac{a}{2}$ and it is given by

$$
\begin{align*}
w_{\max } & =\frac{F_{0} b a^{3}}{48 E_{x x}^{b} I_{y y}}+\frac{F_{0} b a}{4 K G_{x x}^{b} b h} \tag{VIII}\\
& =\frac{F_{0} b a^{3}}{48 E_{x x} I_{y y}}\left[1+\left(\frac{E_{x x}^{b}}{K G_{x z}^{b}}\right)\left(\frac{h}{a}\right)^{2}\right]
\end{align*}
$$

Equation (VIII) shows that the effect of shear deformation is to increase the deflection. The contribution due to shear deformation to the deflection depends on the madulus ratio $\frac{E_{x}^{b}}{G_{x}^{b}}$ as well as the ratio of thickness to length $\frac{h}{a}$.
The effect of shear deformation is negligible for thin and lang beams.
7.3.3 Buckling

For bouckling analysis, the inertia terms and applied transvers load q in Eq. $(7.3-11)$ are set to Zero to obtain the governing equations of buckling under compressive edge la ad $\hat{N}_{x}=-N_{x}^{0}$:

$$
\begin{aligned}
& { }_{K G_{x z}^{b} b h\left(\frac{d^{2} W}{d x^{2}}+\frac{d \mathcal{X}}{d x}\right)+b \hat{N}_{x x} \frac{d^{2} W}{d x^{2}}=0 \quad \text { Buckling of (7.3-19 arb) }}^{\text {FSDT beam }} \\
& E_{x x}^{b} I_{y y} \frac{d^{2} \mathcal{X}}{d x^{2}}-K G_{x z}^{b} b h\left(\frac{d W}{d x}+\mathcal{X}\right)=0 \quad \text { FSDT beam } \quad \mathcal{X} \equiv \phi_{\varkappa} \\
& a \Rightarrow K G_{x z}^{b} b h \frac{d x}{d x}=-\left(K G_{x z}^{b} b h-b N_{x}^{0}\right) \frac{d^{2} w}{d x^{2}} \text { (7-3-20) } \\
& \rightarrow K G_{x z}^{b} b h X(x)=-\left(K G_{x z}^{b} b h, b N_{x}^{0}\right) \frac{d w}{d x}+K_{1} \quad(7.3-21)
\end{aligned}
$$

Next differentiate Eq. (73.19b) with respect to x
and substitute for $\frac{d x}{d x}$ from Eq. (7.3-20) to obtain the
result: result:

$$
\begin{equation*}
E_{x x}^{b} I_{y y}\left(1-\frac{b N_{x x}^{0}}{K G_{x z}^{b} b h}\right) \frac{d^{4} W}{d x^{4}}+b N_{x x}^{0} d^{d^{2} W} d x^{2}=0 \tag{7.3-22}
\end{equation*}
$$

The general solution of $E q$. $(7.3-22)$ is

$$
w(x)=c_{1} \sin \lambda x+c_{2} \sin \lambda x+c_{3} x+c_{4} \quad(7.3-23)
$$

where

Example: Simply supported beam.

bc.:

$$
W(0)=0, \quad W(a)=0, \quad \frac{d \mathcal{X}}{d x}(0)=0, \quad \frac{d \mathcal{X}}{d x}(a)=0
$$

In view of Eq. (7.3-20) the above conditions are equivalent to

$$
W(0)=0, \quad W(a)=0, \quad \frac{d^{2} W}{d x^{2}}(0)=0, \quad \frac{d^{2} W}{d x^{2}}(a)=0
$$

The boundary conditions in Eq. above lead to the result $c_{2}=c_{3}=c_{4}=0$, and for $c_{1} \neq 0$ the requirement

$$
\sin \lambda a=0 \text { implies } \lambda a=n \pi
$$

Substituting for λ from Eq. (7.3-24) into Eq. above for $N_{x x}^{0}$, we obtain

$$
\begin{aligned}
b N_{x x}^{0} & =E_{x x}^{b} I_{y y}\left(\frac{n \pi}{a}\right)^{2}\left[\frac{K G_{x z}^{b} b h}{K G_{x z}^{b} b h+E_{x x}^{b} I_{y y}\left(\frac{n \pi}{a}\right)^{2}}\right] \\
& =E_{x x}^{b} I_{y y}\left(\frac{n \pi}{a}\right)^{2}\left[1-\frac{E_{x x}^{b} I_{y y}\left(\frac{n \pi}{a}\right)^{2}}{K G_{x z}^{b} b h+E_{x x}^{b} I_{y y}\left(\frac{n \pi}{a}\right)^{2}}\right]
\end{aligned}
$$

The critical buckling load is given by the minimum $(n=1)$

$$
b N_{c r}=E_{x x}^{b} I_{y y}\left(\frac{\pi}{a}\right)^{2}\left[1-\frac{E_{x x}^{b} I_{y y}\left(\frac{\pi}{a}\right)^{2}}{K G_{x z}^{b} b h+E_{x x}^{b} I_{y y}\left(\frac{\pi}{a}\right)^{2}}\right]
$$

7.3.4 vibration

For natural vibration, we assume that the applied axial force and transverse load are zero and that the motion is periodic. Equations (7.3-11) thane the form $w_{0}=w(n) e^{i \omega t}$

$$
\begin{array}{ll}
K G_{x i}^{b} b h\left(\frac{d^{2} W}{d x^{2}}+\frac{d \mathcal{X}}{d x}\right)+\omega^{2} \hat{I}_{0} W=0 & \text { Vibration of } \\
\text { FSDT beam }
\end{array}
$$

$$
E_{x x}^{b} I_{y y} \frac{d^{2} \mathcal{X}}{d x^{2}}-K G_{x z}^{b} b h\left(\frac{d W}{d x}+\mathcal{X}\right)+\omega^{2} \hat{I}_{I} \mathcal{X}=0
$$

$$
x \equiv \phi_{x}
$$

we use the same procedure as before to eliminate X

$$
\begin{align*}
& \xrightarrow{\text { (a) }} K G_{x z}^{b} b h \frac{d \mathcal{X}}{d x}=-\hat{I}_{0} \omega^{2} W-K G_{x z}^{b} b h \frac{d^{2} W}{d x^{2}} \\
& \Rightarrow \quad E_{x x}^{b} I_{y y} \frac{d^{4} W}{d x^{4}}+\left(\frac{E_{x y^{b}}^{b} I_{y y} \hat{I}_{0}}{K G_{x z}^{b_{z}} h}+\hat{I}_{2}\right) \omega^{2} \frac{d^{2} W}{d x^{2}}-\left(1-\frac{\omega^{2} \hat{I}_{2}}{K G_{x z}^{b} b h}\right) \hat{I}_{0} \omega^{2} W=0 \tag{7.3-27}
\end{align*}
$$

$$
(7.3-26)
$$

General form

$$
\begin{equation*}
p \frac{d^{4} W}{d x^{4}}+q \frac{d^{2} W}{d x^{2}}-r W=0 \tag{7.3-28}
\end{equation*}
$$

where

$$
\begin{equation*}
p=E_{x x}^{b} I_{y y}, q=\left(\frac{E_{x x}^{b} I_{y y}}{K G G_{x z}^{b} h h}+\frac{\hat{I}_{2}}{\hat{I}_{0}}\right) \hat{I}_{0} \omega^{2}, r=\left(1-\frac{\omega^{2} \hat{I}_{2}}{K G_{x z}^{b} b h}\right) \hat{I}_{0} \omega^{2} \tag{7.3-29}
\end{equation*}
$$

The general Solution of Eq. $(7.2,28)$

$$
\begin{align*}
& \left.w(x)=c_{1} \sin \lambda x+c_{2} \operatorname{s}\right) \lambda x+c_{3} \sinh \left(\mu_{x}\right)+c_{4} \sin \left(\mu_{x}\right) \\
& \lambda=\sqrt{\frac{1}{2 p}\left(q+\sqrt{q^{2}+4 p r}\right.}, \quad \mu=\sqrt{\frac{1}{2 p}\left(-q+\sqrt{q^{2}+4 p r}\right.}
\end{align*}
$$

Note that we have:

$$
\begin{array}{r}
\left(2 \lambda^{2} p-q\right)^{2}=q^{2}+4 p r \text { or } p \lambda^{4}-q \lambda^{2}-r=0 \\
(7 \cdot 3-32)
\end{array}
$$

Alternatively, Eq. (7.3-28) can be written, with w given by Eq. (7.3-30) in terms of ω as:

$$
\begin{equation*}
P w^{4}-Q w^{2}+R=0 \tag{7.3-33}
\end{equation*}
$$

where

$$
P=\frac{\hat{I}_{2}}{K G_{x}^{b} b h}, Q=\left[1+\left(\frac{E_{x}^{b} I_{y w}}{K G c_{x}^{b} b h}+\frac{\hat{I}_{2}}{\hat{I}_{0}}\right) \lambda^{2}\right], R=\left(\frac{E_{x x}^{b} I_{y y}}{\hat{I}_{0}}\right) \lambda^{4} \quad(7.3-34)
$$

Hence, there are two (sets of) roots of this equation (when $\hat{I}_{2} \neq 0$)

$$
\left(\omega^{2}\right)_{1}=\frac{1}{2 P}\left(Q-\sqrt{Q^{2}-4 P R}\right),\left(\omega^{2}\right)_{2}=\frac{1}{2 P}\left(Q+\sqrt{Q^{2}-4 P R}\right) \quad(7.3-35)
$$

It can be shown that $Q^{2}-4 P R>0($ and $P Q>0)$, and therefore the frequency given by the first equarr. is the smaller of the two values. when the rotary
inertia is neglegible, we have $P=0$, and the frequency is given by:

$$
\omega^{2}=\frac{R}{\bar{Q}}, \bar{Q}=\left[1+\left(\frac{E_{x}^{b} I_{y}}{k G_{x}^{b} b h}\right) \lambda^{2}\right], \quad R=\left(\frac{E_{x}^{b} I_{y}}{\hat{I}_{0}}\right) \lambda^{4}
$$

Example: Simply supported beam
The boundary Conditions yield $C_{2}=C_{3}=C_{4}=0$ and
$c_{1} \sin \lambda a=0$, which implies $\lambda_{n}=\frac{n \pi}{a}$ substitution of λ into Eq. (7.3-36) and the result into Eq. (7.3-35) gives two frequencies for each value of λ. The fundamental frequency will came from Eq. (7.3-35a).
when the rotary inertia is neglegible, we obtain from Eq. (7.3-36) the result:

$$
\omega_{n}=\left(\frac{n \pi}{a}\right)^{2} \sqrt{\frac{E_{x x}^{b} I_{y y}}{\hat{I}_{0}}} \sqrt{1-\frac{\left(\frac{n \pi}{a}\right)^{2} E_{x x}^{b} I_{y y}}{K G_{x z}^{b} b h+\left(\frac{n \pi}{a}\right)^{2} E_{: x x}^{b} I_{y y}}}
$$

7.4. Cylindrical Bending Using CLPT
7.4-1 Governing Equations

$$
\begin{gathered}
q(\boldsymbol{x}), \frac{\partial}{\partial y}=0 \\
\Rightarrow u(\eta), W_{0}(\boldsymbol{n}) \\
A_{11} \frac{\partial^{2} u_{0}}{\partial x^{2}}+A_{16} \frac{\partial^{2} v_{0}}{\partial x^{2}}-B_{11} \frac{\partial^{3} w_{0}}{\partial x^{3}}-\frac{\partial N_{x x}^{T}}{\partial x}=I_{0} \frac{\partial^{2} u_{0}}{\partial t^{2}}-I_{1} \frac{\partial^{3} w_{0}}{\partial x \partial t^{2}} \\
A_{16} \frac{\partial^{2} u_{0}}{\partial x^{2}}+A_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}}-B_{16} \frac{\partial^{3} w_{0}}{\partial x^{3}}-\frac{\partial N_{x y}^{T}}{\partial x}=I_{0} \frac{\partial^{2} v_{0}}{\partial t^{2}} \\
B_{11} \frac{\partial^{3} u_{0}}{\partial x^{3}}+B_{16} \frac{\partial^{3} v_{0}}{\partial x^{3}}-D_{11} \frac{\partial^{4} w_{0}}{\partial x^{4}}+\frac{\partial}{\partial x}\left(\hat{N}_{x x} \frac{\partial w_{0}}{\partial x}\right)-\frac{\partial^{2} M_{x x}^{T}}{\partial x^{2}}+q \\
=I_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}}-I_{2} \frac{\partial^{4} w_{0}}{\partial x^{2} \partial t^{2}}+I_{1} \frac{\partial^{3} u_{0}}{\partial x \partial t^{2}}
\end{gathered}
$$

Governing equations of cylindrical bending using CLPT (7.4-1 a, b, c)
where

$$
\left(I_{0}, I_{1}, I_{2}\right)=\sum_{k=1}^{L} \int_{z_{k}}^{z_{k+1}}\left(1, z, z^{2}\right) \rho_{0}^{(k)} d z \quad \text { (7,4-2) }
$$

For a general lamination scheme, the three equations are fully coupled. In the case of cross -ply laminates, the second equation becomes uncoupled from the rest $\left.(C)_{16}=0\right)$.
Eq. (7.4-1) can be expressed in an alternative form:

$$
\begin{aligned}
A \frac{\partial^{2} u_{0}}{\partial x^{2}}= & B \frac{\partial^{3} w_{0}}{\partial x^{3}}+A_{66} \frac{\partial N_{x x}^{T}}{\partial x}-A_{16} \frac{\partial N_{x y}^{T}}{\partial x}+A_{66} I_{0} \frac{\partial^{2} u_{0}}{\partial t^{2}}-A_{16} I_{0} \frac{\partial^{2} v_{0}}{\partial t^{2}} \\
& -A_{66} I_{1} \frac{\partial^{3} w_{0}}{\partial x \partial t^{2}} \\
A \frac{\partial^{2} v_{0}}{\partial x^{2}}= & C \frac{\partial^{3} w_{0}}{\partial x^{3}}+A_{11} \frac{\partial N_{x y}^{T}}{\partial x}-A_{16} \frac{\partial N_{x x}^{T}}{\partial x}+A_{11} I_{0} \frac{\partial^{2} v_{0}}{\partial t^{2}}-A_{16} I_{0} \frac{\partial^{2} u_{0}}{\partial t^{2}} \\
& +A_{16} I_{1} \frac{\partial^{3} w_{0}}{\partial x \partial t^{2}} \\
D \frac{\partial^{4} w_{0}}{\partial x^{4}}= & \bar{B} \frac{\partial^{2} N_{x x}^{T}}{\partial x^{2}}+\bar{C} \frac{\partial^{2} N_{x y}^{T}}{\partial x^{2}}-\left(I_{1}-\bar{B} I_{0}\right) \frac{\partial^{3} u_{0}}{\partial x \partial t^{2}}+\bar{C} I_{0} \frac{\partial^{3} v_{0}}{\partial x \partial t^{2}}-I_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}} \\
& +\left(I_{2}-\bar{B} I_{1}\right) \frac{\partial^{4} w_{0}}{\partial x^{2} \partial t^{2}}-\frac{\partial^{2} M_{x x}^{T}}{\partial x^{2}}+\frac{\partial}{\partial x}\left(\hat{N}_{x x} \frac{\partial w_{0}}{\partial x}\right)+q
\end{aligned}
$$

where

$$
\begin{gathered}
A=A_{11} A_{66}-A_{16} A_{16}, \quad B=B_{11} A_{66}-B_{16} A_{16}, \quad C=A_{11} B_{16}-A_{16} B_{11} \quad(7.4-4) \\
D=D_{11}-B_{11} \bar{B}-B_{16} \bar{C}, \quad \bar{B}=\frac{B}{A}, \quad \bar{C}=\frac{C}{A}
\end{gathered}
$$

Note that $C=0$ for a cross-ply (aminate $\left(A_{16}=B_{16}=D_{16}=0\right)$ and v is identically zero unless $N_{x y}^{T}$ is at least a linear function of x.

