Composites
Lesson 22
Example: Simply supported beam.

$$W(0) = 0, W(a) = 0, \frac{d^2W}{dx^2}(0) = 0, \frac{d^2W}{dx^2}(a) = 0 \implies c_2 = c_3 = c_4 = 0$$

$$c_1 \sin \lambda a = 0, \text{ which implies } \lambda = \frac{n\pi}{a}$$

$$(f \cdot 2 - 34) \implies \omega_n = \left(\frac{n\pi}{a}\right)^2 a_0 \sqrt{1 + \frac{bN_{xx}}{(\frac{n\pi}{a})^2 E_{xx}^2 I_{yy}}} \sqrt{\frac{1}{1 + (\frac{n\pi}{a})^2 \frac{I_2}{I_0}}}$$
if $\hat{I}_2 = 0 \implies \omega_n = \left(\frac{n\pi}{a}\right)^2 a_0 \sqrt{1 + \frac{bN_{xx}}{(\frac{n\pi}{a})^2 E_{xx}^2 I_{yy}}}$
Thus the effect of the anial tensile force \hat{N}_{xx} is to increase
the natural frequencies. If we have avery flemible beam,
say a cable under large tensian, the second term under
the Vadical in E. (x) becames Verj large in comparision

with unity; if n is not larg, we have $W_n \approx \frac{n\pi}{a} \sqrt{\frac{\dot{N_n}}{1}}$ (laminated cable)

Table 4.2.3: Values of the constants and eigenvalues for natural vibration of laminated composite beams with various boundary conditions $(\lambda_n^4 \equiv \omega_n^2 I_0 / E_{xx}^b I_{yy} = (e_n/a)^4)$. The classical laminate theory without rotary inertia is used.

End conditions at $x = 0$ and $x = a$	Constants [†]	Characteristic equation and values of $e_n \equiv \lambda_n a$		
• Hinged-Hinged	$c_1 \neq 0, \ c_2 = c_3 = c_4 = 0$	$\sin e_n = 0$ $e_n = n\pi$		
• Fixed-Fixed	$c_1 = -c_3 = 1/(\sin e_n - \sinh e_n) -c_2 = c_4 = 1/(\cos e_n - \cosh e_n)$	$\cos e_n \cosh e_n - 1 = 0$ $e_n = 4.730, 7.853, \cdots$		
• Fixed-Free	$c_1 = -c_3 = 1/(\sin e_n + \sinh e_n) -c_2 = c_4 = 1/(\cos e_n + \cosh e_n)$	$\cos e_n \cosh e_n + 1 = 0$ $e_n = 1.875, 4.694, \cdots$		
• Free-Free	$c_1 = c_3 = 1/(\sin e_n - \sinh e_n)$ $c_2 = c_4 = -1/(\cos e_n - \cosh e_n)$	$\cos e_n \cosh e_n - 1 = 0$ $e_n = 4.730, 7.853, \cdots$		
• Hinged-Fixed	$c_1 = 1/\sin e_n, \ c_3 = 1/\sinh e_n$ $c_2 = c_4 = 0$	$\tan e_n = \tanh e_n$ $e_n = 3.927, 7.069, \cdots$		
• Hinged-Free	$c_1 = 1/\sin e_n, \ c_3 = -1/\sinh e_n$ $c_2 = c_4 = 0$	$\tan e_n = \tanh e_n$ $e_n = 3.927, 7.069, \cdots$		
† See Eq. (4.2.46a): $W($	$(x) = c_1 \sin \lambda x + c_2 \cos \lambda x + c_3 \sinh \mu x + c_2 \sin \lambda x + c_3 \sinh \mu x + c_2 \sin \lambda x + c_3 \sin \lambda x $	$c_4 \cosh \mu x$,		

Table 4.2.4: Maximum transverse deflections, critical buckling loads, and fundamental frequencies of laminated beams according to the classical beam theory $(E_1/E_2 = 25, G_{12} = G_{13} = 0.5E_2, G_{23} = 0.2E_2, \nu_{12} = 0.25).$

Seval	numerical

Laminate	Hinged-Hinged		Clamped-Clamped		Clamped-Free				
		\bar{N}	$\bar{\omega}$	\bar{w}	\bar{N}	$\bar{\omega}$	\bar{w}	\bar{N}	$\bar{\omega}$
0	$1.000 \\ 0.625$	20.562	$14.246 \\ 14.245 \\ 14.187$	$0.250 \\ 0.125$	82.247	32.292 32.291 32.129	$16.000 \\ 6.000$	5.140	5.074 5.074 5.071
90	$25.000 \\ 15.625$	0.822	2.849	$6.250 \\ 3.125$	3.290	6.458	$\begin{array}{c} 400.00\\ 150.00\end{array}$	0.205	1.015
$(0/90)_s$	$\begin{array}{c} 1.134 \\ 0.709 \end{array}$	18.127	13.375	$\begin{array}{c} 0.283 \\ 0.142 \end{array}$	72.507	30.320	$\begin{array}{c} 18.149 \\ 6.806 \end{array}$	4.532	4.764
$(90/0)_s$	$6.239 \\ 3.899$	3.296	5.703	$\begin{array}{c} 1.560 \\ 0.780 \end{array}$	13.183	12.929	$99.821 \\ 37.433$	0.824	2.032
$(45/-45)_{s}$	$\begin{array}{c} 14.308\\ 8.942\end{array}$	1.437	3.766	$3.577 \\ 1.788$	5.748	8.537	$228.93 \\ 85.847$	0.359	1.341
Laminate A	$1.607 \\ 1.005$	12.790	11.236	$\begin{array}{c} 0.402 \\ 0.201 \end{array}$	51.162	25.469	$25.721 \\ 9.645$	3.197	4.002
Laminate B	$2.801 \\ 1.751$	7.341	8.512	$\begin{array}{c} 0.700 \\ 0.350 \end{array}$	29.366	19.296	$\begin{array}{c} 44.813\\ 16.805 \end{array}$	1.835	3.032
Laminate C	$7.945 \\ 4.966$	2.588	5.054	$\begin{array}{c} 1.986 \\ 0.993 \end{array}$	10.351	11.456	$127.13 \\ 47.673$	0.647	1.800

Laminate $A = (0/\pm 45/90)_s$, Laminate $B = (45/0/-45/90)_s$, Laminate $C = (90/\pm 45/0)_s$.

examples

7.3. Analysis of Laminated Beam Using FSDT
7.3.1. Governing Equations
When opplied to beams, FSDT is known as the Timoshenko beam
theorg.
The laminate constitutive equations for symmetric laminates,
in the absence of in-plane forces, are given by:

$$\begin{cases}
M_{X} \\
M_{Y} \\
M_{$$

$$\begin{pmatrix} \partial \mathcal{F}_{\mathcal{H}} \\ \partial \mathcal{H} \\ \partial \mathcal{G}_{\mathcal{H}} \\ \partial \mathcal{G}_{\mathcal{H}} \\ \end{pmatrix} = \begin{bmatrix} D \end{bmatrix}^{*} \begin{pmatrix} \mathcal{M}_{\mathcal{H}} \\ \mathcal{M}_{\mathcal{H}} \\ \mathcal{M}_{\mathcal{H}} \end{pmatrix}$$

$$\begin{pmatrix} \mathcal{F}_{\mathcal{H}} \\ \mathcal{H}_{\mathcal{H}} \\ \mathcal{H}_{\mathcal{H}} \end{pmatrix}$$

$$\begin{pmatrix} \mathcal{F}_{\mathcal{H}} \\ \mathcal{H}_{\mathcal{H}} \\ \mathcal{H}_{\mathcal{H}$$

where K is the shear correction coefficient, D_{ij}^{\star} denote the elements of the inverse of [D], and A_{ij}^{\star} denote elements of the inverse of [A]. As in previous section, we assume that

$$M_{y} = M_{xy} = Q_{y} = Q_{z} = 0 \text{ and both } w_{o} \text{ and } \phi_{x} \text{ are functions}$$
of only \neq and t :

$$w_{o} = W_{o}(\pi, t), \quad \phi_{\pi} = \phi_{\pi}(\pi, t) \quad (7.3.5)$$

$$\Rightarrow U(\pi, t) = \frac{2}{p_{x}}(\pi, t), \quad w(\pi, t) = W_{o}(\pi) \quad (7.3.6)$$

$$\longrightarrow \xi_{x} = \frac{2}{p_{x}} \frac{\partial \phi_{\pi}}{\partial x}, \quad 2\xi_{xz} = \frac{\partial W_{o}}{\partial x} + \phi_{\pi} \quad (7.3-7)$$

$$\longrightarrow \int \frac{\partial \phi_{x}}{\partial \pi} = D_{11}^{+} M_{\pi} \quad (7.3-8)$$

$$\left(\frac{\partial W_{o}}{\partial \pi} + \phi_{\pi} = \frac{A_{55}^{*}}{K} Q_{\pi}\right)$$
or

$$\begin{cases} E_{n}^{b} I_{y} \frac{\partial \varphi_{x}}{\partial x} = M(n) , M(x) = bM_{x}, E_{n}^{b} = \frac{12}{Q_{n}^{a} h^{3}} \\ K G_{x2}^{b} bh \left(\frac{\partial W_{0}}{\partial x} + \varphi_{n}\right) = Q(n) , Q(n) = bQ_{x}, G_{x2}^{b} = \frac{1}{A_{55}^{b} h} \\ (7.3 - 9a_{1}b) \end{cases}$$
The equations of matrian fram Eq. (b-2-17) are:

$$\frac{\partial Q_{n}}{\partial n} + M_{n} \frac{\partial^{2} W_{0}}{\partial x^{2}} + \varphi = I_{0} \frac{\partial^{2} W_{0}}{\partial t^{2}} \quad (7.3 - 10a)$$

$$\frac{\partial M_{n}}{\partial n} - Q_{n} = I_{2} \frac{\partial^{2} \varphi_{n}}{\partial t^{2}} \quad (7.3 - 10b)$$
Using Eq. (7.3 - 9) in Eq. (7.3 - 10), the equations of matrian can be recast in terms of the displacement function s:

$$KG_{xz}^{b}bh\left(\frac{\partial^{2}w_{0}}{\partial x^{2}}+\frac{\partial\phi_{x}}{\partial x}\right)+b\dot{N}_{xx}\frac{\partial^{2}w_{0}}{\partial x^{2}}+\hat{q}=\hat{I}_{0}\frac{\partial^{2}w_{0}}{\partial t^{2}}$$

$$E_{xx}^{b}I_{yy}\frac{\partial^{2}\phi_{x}}{\partial x^{2}}-KG_{xz}^{b}bh\left(\frac{\partial w_{0}}{\partial x}+\phi_{x}\right)=\hat{I}_{2}\frac{\partial^{2}\phi_{x}}{\partial t^{2}}$$
Governing equations of FSOT beam
$$(7.3-11 \ a,b)$$
where
$$\hat{f}=bf, \quad \hat{I}_{x}=bI, \quad \hat{I}_{x}=bIz \quad (7.3-11 \ c)$$

$$\int \frac{2}{3}\frac{2}{2}dA \quad \int \frac{2}{3}\frac{2}{2}dA$$

$$6.3-2 \quad \text{Bending}$$

$$KG_{xz}^{b}bh\left(\frac{d^{2}w_{0}}{dx^{2}}+\frac{d\phi_{x}}{dx}\right)+\hat{q}=0$$

$$E_{xx}^{b}I_{yy}\frac{d^{2}\phi_{x}}{dx^{2}}-KG_{xz}^{b}bh\left(\frac{dw_{0}}{dx}+\phi_{x}\right)=0$$

$$FSDT \text{ beam} \quad (7.3-12 \ b)$$

$$=\sum E_{xx}^{b}I_{yy}\phi_{x}(x)=-\int_{0}^{x}\int_{0}^{c}\int_{0}^{\eta}\hat{q}(\xi)d\xi d\eta d\zeta +c_{1}\frac{x^{2}}{2}+c_{2}x+c_{3}} \quad (7.3-13)$$
and

$$w_{0}(x) = -\frac{1}{E_{xx}^{b}I_{yy}} \left[-\int_{0}^{x} \int_{0}^{\xi} \int_{0}^{\eta} \int_{0}^{\mu} \hat{q}(\zeta) d\zeta d\mu d\eta d\xi + c_{1}\frac{x^{3}}{6} + c_{2}\frac{x^{2}}{2} + c_{3}x + c_{4} \right]$$

$$+ \frac{1}{KG_{xz}^{b}bh} \left[-\int_{0}^{x} \int_{0}^{\xi} \hat{q}(\zeta) d\zeta d\xi + c_{1}x \right]$$

$$(4.3.13)$$

It is informative to note from Eq. (7.3-14) that the transverse deflection of the Timoshenka beam theory consits of two parts,

one due to pure bending and the other due to transverse shear:

$$W_{0}(n) = W_{0}^{b}(n) + W_{0}^{b}(n) \qquad (7.3-15)$$

where $w_{0}^{b}(x) = \frac{1}{E_{xx}^{b}I_{yy}} \left[\int_{0}^{x} \int_{0}^{\xi} \int_{0}^{\eta} \int_{0}^{\mu} \hat{q}(\zeta) d\zeta d\mu d\eta d\xi - c_{1} \frac{x^{3}}{6} - c_{2} \frac{x^{2}}{2} - c_{3} x - c_{4} \right] \qquad (\cancel{4}.3)$ $w_{0}^{s}(x) = \frac{1}{KG_{xz}^{b}bh} \left[-\int_{0}^{x} \int_{0}^{\xi} \hat{q}(\zeta) d\zeta d\xi + c_{1} x \right] \qquad (4.3)$

The pure bending deflection
$$w_0^b(n)$$
 is the same as that derived
in the classical beam theory (CLPT). When the transverse
shear Stiffness is infinite, the shear deflection $w_0^s(n)$ goes to
Zero, and the Timoshenko beam theory Solutions reduce to
those of the Classical beam theory (CLPT).
The expressions for in-plane Stresses of the Timoshenko beam
theory remain the same as those in the classical
beam theory (See Eq. (7.2-16)).
 $\sigma_{xy}^{(k)}(x,z) = \frac{M(x)z}{b} (\bar{Q}_{12}^{(k)} D_{11}^* + \bar{Q}_{26}^{(k)} D_{16}^*) (7.3-17)$
 $\sigma_{xy}^{(k)}(x,z) = \frac{M(x)z}{b} (\bar{Q}_{12}^{(k)} D_{11}^* + \bar{Q}_{26}^{(k)} D_{12}^* + \bar{Q}_{66}^{(k)} D_{16}^*)$

And transverse shear stresses are the same as (7.2.19)

$$\sigma_{xz}^{(k)}(x,z) = -Q_x(x) \left(\bar{Q}_{11}^{(k)} D_{11}^* + \bar{Q}_{12}^{(k)} D_{12}^* + \bar{Q}_{16}^{(k)} D_{16}^* \right) \left(\frac{z^2 - z_k^2}{2} \right) + G^{(k)} (4.2.15a)$$

$$\sigma_{zz}^{(k)}(x,z) = -\frac{dQ_x}{dx} \left(\bar{Q}_{11}^{(k)} D_{11}^* + \bar{Q}_{12}^{(k)} D_{12}^* + \bar{Q}_{16}^{(k)} D_{16}^* \right) \left(\frac{z^3 - z_k^3}{6} \right) + H^{(k)} (4.2.15b)$$

· LASA

| F.

0

Example: Simply Supported beam,

$$M(n) = \frac{F_{s}bx}{2}$$
, $Q(n) = \frac{dM}{dn} = \frac{F_{s}b}{2}$,

$$\begin{split} \varphi_{\mathcal{A}}(n) &= \frac{F_{0}b}{4E_{\mathbf{x}}^{b}I_{\mathbf{y}}} \quad \mathcal{H}^{2} + C_{1} \quad \text{the slope} \\ \mathcal{U} &= \mathcal{U}_{0} + \mathcal{E}\varphi_{\mathbf{x}} \quad \frac{\text{symmetry}}{\sum} \quad \varphi_{\mathbf{x}}(\frac{\alpha}{2}) = 0 \quad \sum C_{1} = -\frac{F_{0}ba^{2}}{16E_{\mathbf{x}x}^{b}I_{\mathbf{y}y}} \\ \varphi_{x}(x) &= -\frac{F_{0}ba^{2}}{16E_{\mathbf{x}x}^{b}I_{\mathbf{y}y}} \left[1 - 4\left(\frac{x}{a}\right)^{2}\right], \quad 0 \leq x \leq \frac{a}{2} \end{split}$$

It is interesting to note from Eq. (1) that the rotation function $\phi_x(x)$ is the same as the slope $-dw_0/dx$ from the Euler-Bernoulli beam theory (i.e., ϕ_x is independent of transverse shear stiffness). Consequently, the bending moment and therefore the axial stress, is independent of shear deformation. In fact, ϕ_x is independent of shear deformation for all statically determinate beams and indeterminate beams with symmetric boundary conditions and loading (see Wang [27]). However, for general statically indeterminate beams, the rotation ϕ_x will depend on the shear stiffness $KG_{xz}^b bh$ (see Problem 4.11).

substituting for \$, into E7. (7.3_9b) we obtain

 $\frac{dw_{o}}{dn} = \frac{F_{o}ba^{2}}{[6E_{o}b]_{1}} \left[\left[-4\left(\frac{n}{a}\right)^{2} \right] + \frac{F_{o}b}{2 kG_{xz}^{b}bh} \right]$