Composites Lesson 21
$$rac{1}{2}$$
 $rac{1}{2}$ $rac{1}{$

$$E_{x}^{b} I_{y} \frac{d^{4} w_{o}}{dx^{4}} + b N_{x}^{o} \frac{d^{2} w_{o}}{dx^{2}} = o \qquad (7.2.22)$$

$$E_{x}^{b} I_{y} \frac{d^{4} w_{o}^{e}}{dx^{4}} + b N_{x}^{o} \frac{d^{2} w_{o}^{e}}{dx^{2}} = o \qquad (7.2.23)$$
By integrating (7.2.21) we have.
$$\frac{d^{2} w}{dx^{2}} + \frac{b N_{x}^{o}}{E_{y}^{b} I_{y}} w = K_{y} + K_{z} \qquad (7.2.24)$$
General Solution for this equation is: (7.2.25)
$$w(x) = C_{y} Sin(\lambda_{b}x) + C_{z} Sin(\lambda_{b}x) + C_{3}x + C_{4}$$
where
$$\lambda_{b}^{2} = \frac{b N_{x}^{o}}{E_{y}^{b} I_{y}} \Rightarrow C_{3} = \frac{K_{1}}{\lambda_{b}^{2}} \Rightarrow C_{4} = \frac{K_{z}}{\lambda_{b}^{2}} (7.2.26)$$

The constants Ci, Cz, Cz and cy can be determined using the boundary Conditions of the beam.

we are interested in determining the values of λ_b for which there exists a nonzero solution W(m), when beam experiences deflection. once such a λ_b is Known (often there will be many), the buckling load is determined from Eq. (7.2-26)

$$\mathcal{N}_{\mathbf{x}}^{\circ} = \left(\frac{\mathcal{E}_{\mathbf{x}}^{b} \mathbf{I}_{\mathbf{y}}}{b}\right) \lambda_{b}^{2} \qquad (7.2-27)$$

The smallest value of N_{st}° which is given by the smallest value of λ_{b} is the critical buckling load. The buckling shape (or mode) is given by W(n).

Example: Simply supported beam.

$$W_{(0)}=0$$
, $W_{0}(a)=0$, $M_{H}(a)=0$
These boundary conditions imply
 $W(0)=0$, $W(a)=0$, $\frac{d^{2}W}{d\pi^{2}}(a)=0$, $\frac{d^{2}W}{d\pi^{2}}(a)=0$
 $W(0)=0$: $C_{2}+C_{4}=0$
 $W(0)=0$: $-C_{2}\lambda_{b}^{2}=0$ which implies $C_{2}=0$, $C_{4}=0$
 $W(a)=0$: $C_{1}Sin(\lambda_{b}a)+C_{3}Cl=0$
 $W'(a)=0$: $C_{1}Sin(\lambda_{b}a)+C_{3}Cl=0$
 $W'(a)=0$: $C_{1}Sin(\lambda_{b}a)=0$ which implies $C_{3}=0$
For a nontrivial solution, the Condition
 $C_{1}Sin(\lambda_{b}a)=0$ implies that $\lambda_{3}a=0$ if $n=1,2,-1$

The critical buckling load becomes (n=1)

$$N_{cr} = \left(\frac{\pi}{a}\right)^2 \frac{E_{\pi}^{b}I_{y}}{b} = \frac{\pi^2}{12} \frac{E_{\pi}^{b}h^3}{a^2}$$

and the buckling mode (eigenfunction) associated with it is $W(n) = C_1 \sin \frac{\pi n}{\alpha}$

Example: clamped beam

$$W(0) = 0$$
, $\frac{dW_0}{dN}(0) = 0$, $W_0(0) = 0$, $\frac{dW_0}{dN}(0) = 0$

which can be expressed as

$$W(o) = o, \frac{dW}{dx}(o) = o, \frac{W(a)}{dx}(a) = o, \frac{dW}{dn}(a) = o$$

we have

$$\begin{split} & \psi(\circ) = 0: \quad C_2 + C_4 = 0 \\ & \psi'(\circ) = 0: \quad C_1 \lambda_b + C_3 = 0 \\ & \psi(\alpha) = 0: \quad C_1 \sin(\lambda_b \alpha) + C_2 \cos(\lambda_b \alpha) + C_3 \alpha + C_4 = 0 \\ & \psi(\alpha) = 0: \quad C_1 \lambda_b \cos(\lambda_b \alpha) - C_2 \lambda_b \sin(\lambda_b \alpha) + C_3 = 0 \end{split}$$

Expressing these equations in terms of constants
$$C_1 \operatorname{and} C_2$$
 we obtain
 $C_1 (\operatorname{sin}(\lambda_b \alpha) - \lambda_b \alpha) + C_2 (\$) \lambda_b \alpha - 1) = 0$
 $C_1 (\$) (\lambda_b \alpha) - 1 - C_2 \operatorname{Sin}(\lambda_b \alpha) = 0$
For a nontrivial solution, the determinate of the coefficient
matrix of the above two equations must be zero (eigenvalue
Problem)

$$\left| \begin{array}{c} \sin(\lambda_{b}\alpha) - \lambda_{b}\alpha & \operatorname{ss}(\lambda_{b}\alpha) - 1 \\ \operatorname{ss}(\lambda_{b}\alpha) - 1 & - \operatorname{sin}(\lambda_{b}\alpha) \end{array} \right| = \circ (\mathcal{F})$$

$$-3 \lambda_{ba} \sin(\lambda_{ba}) + 2 \sin(\lambda_{ba}) - 2 = 0$$

characteristic equation

The solution of equation (x), known as the

characteristic equation, gives the eigenvalues
$$e_n \equiv \lambda_{ba}$$
,
and the buckling load is calculated from Eq. (7.2.27).
A plot of the function $f(e_n) = e_n \operatorname{Sin}(e_n) + 2 \operatorname{SO}(e_n) - 2$ against
 e_n shows that $f(e_n)$ is zero at
 $e_n = 0, 6.28s2(=2\pi), 8.9868, 12.5669(=9\pi), \dots (\lambda_{2n-1a}=2n\pi).$
Hence, the critical (Smallest) buckling load is
 $N_{cr} = (\frac{e_n}{a})^2 (\frac{E_n + J_{a}}{b}) = (\frac{2\pi}{a})^2 (\frac{E_n + J_{a}}{b})$
 $= (\frac{\pi^2}{3}) (\frac{E_n + \lambda^3}{a^2})$

Table 4.2.2: Values of the constants and eigenvalues for buckling of laminated composite beams with various boundary conditions ($\lambda^2 \equiv b N_{xx}^0 / E_{xx}^b I_{yy} = (e_n/a)^2$). The classical laminate theory is used.

End conditions at $x = 0$ and $x = a$	$\mathrm{Constants}^\dagger$	Characteristic equation and values [*] of $e_n \equiv \lambda_n a$
• Hinged-Hinged	$c_1 \neq 0, \ c_2 = c_3 = c_4 = 0$	$\sin e_n = 0$ $e_n = n\pi$
• Fixed-Fixed	$c_1 = 1/(\sin e_n - e_n)$ $c_3 = -1/\lambda_n$	$e_n \sin e_n = 2(1 - \cos e_n)$
%━━━━━₩	$c_3 = -1/\lambda_n$ $c_2 = -c_4 = 1/(\cos e_n - 1)$	$e_n = 2\pi, 8.987, 4\pi, \cdots$
• Fixed-Free	$c_1 = c_3 = 0$ $c_2 = -c_4 \neq 0$	$\cos e_n = 0$ $e_n = (2n - 1)\pi/2$
§	$c_2 = c_4 + c$	
• Free-Free	$c_1 = c_3 = 0$ $c_2 \neq 0, \ c_4 \neq 0$	$\sin e_n = 0$ $e_n = n\pi$
	$c_2 \neq 0, \ c_4 \neq 0$	$e_n = n\pi$
• Hinged-Fixed	$c_1 = 1/e_n \cos e_n, \ c_3 = -1$	$\tan e_n = e_n$
	$c_{2} = c_{4} = 0$	$e_n = 4.493, 7.725, \cdots$
ta P (1220) (W())	$= c_1 \sin \lambda_b x + c_2 \cos \lambda_b x + c_3 x + c_4$	

*For critical buckling load, only the first (minimum) value of $e = \lambda a$ is needed.

7.2-4 Vibration

 \mathbf{w}

For natural vibration, the solution is assumed to be periodic $W_{a}(x,t) = W(x)e^{i\omega t}, i = \sqrt{-1} (7.2 - 28)$

In the absence of applied transverse load &, the governing equation (7.2-8) reduces to:

$$E_{n}^{b} F_{y} \frac{d^{4} w}{dn^{4}} - b \hat{N}_{n} \frac{d^{2} w}{dn^{2}} = w^{2} \hat{f}_{0} w - w^{2} \hat{f}_{2} \frac{d^{2} w}{dn^{2}} \quad (7.2-29)$$

$$Equation (7.2-29) has the general form$$

$$p \frac{d^{4} w}{dn^{4}} + q \frac{d^{2} w}{dn^{2}} - r w = o \quad (7.2-30)$$
where
$$p = E_{n}^{b} F_{\gamma} , q = w^{2} \hat{f}_{2} - b \hat{N}_{n} , r = w^{2} \hat{f}_{0} (7.23)$$

The general solution of Eq. (7.2-30) is: (7.2-32a)

$$W(n) = C_{1} Sin(\lambda n) + C_{2} Sin(\lambda n) + C_{3} Sinh(M n) + C_{4} Sin(M n))$$
Vibration solution for CLPT beam

$$\lambda = \int \frac{1}{2p} (q + \sqrt{q^{2} + qpr}), \quad M = \int \frac{1}{2p} (-q + \sqrt{q^{2} + qpr}) \quad (7.2 - 32b)$$
and C_{1}, C_{2}, C_{3} and C_{4} are constants, which are to be determined
Using the boundary conditions.

$$(7.2 - 32b) =) \quad (2p\lambda^{2} - q)^{2} = q^{2} + 4pr \text{ or } p\lambda^{4} - q\lambda^{2} r = 0$$

$$(2pM^{2} + q) = q^{2} + 4pr \text{ or } pM^{4} + qM^{2} r = 0$$

$$(7.2 - 33a, h)$$

$$\omega^{2} = \lambda^{4} \left(\frac{E_{xx}^{b} I_{yy}}{\hat{I}_{0}} \right) \left(\frac{1+P_{1}}{1+R_{1}} \right), \quad P_{1} = \frac{b\hat{N}_{xx}}{E_{xx}^{b} I_{yy}\lambda^{2}}, \quad R_{1} = \frac{\hat{I}_{2}}{\hat{I}_{0}}\lambda^{2} \qquad (7.2-34.6)$$
$$\omega^{2} = \mu^{4} \left(\frac{E_{xx}^{b} I_{yy}}{\hat{I}_{0}} \right) \left(\frac{1-P_{2}}{1-R_{2}} \right), \quad P_{2} = \frac{b\hat{N}_{xx}}{E_{xx}^{b} I_{yy}\mu^{2}}, \quad R_{2} = \frac{\hat{I}_{2}}{\hat{I}_{0}}\mu^{2} \qquad (7.2-34.6)$$

when the applied anial load is zero, the frequency of vibration can be calculated from

$$\omega^{2} = \lambda^{4} \frac{E_{xx}^{b} I_{yy}}{\hat{I}_{0}} \left(1 - \frac{\hat{I}_{2} \lambda^{2}}{\hat{I}_{0} + \hat{I}_{2} \lambda^{2}} \right) = \mu^{4} \frac{E_{xx}^{b} I_{yy}}{\hat{I}_{0}} \left(1 + \frac{\hat{I}_{2} \mu^{2}}{\hat{I}_{0} - \hat{I}_{2} \mu^{2}} \right)$$

It is clear from the first expression that rotary inertia decreases the frequency of natural vibration. If the

votary inertia is neglected, we hav
$$\lambda = M$$
 and
 $\omega = \lambda^2 \alpha_n$, $\alpha_n = \sqrt{\frac{E_n^b I_y}{\hat{I}_n}}$ (7.2.36)