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7- 2-3 Buckling
In a beam subjected to amid compressive load N^n = - Nao ,

if

the small aditi anal disturbance results in a large response and the

beam does not return to its ① rig in at equilibrium configuration ,
the

beam is said to be unstable . The onset of instability is called buckling
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By integrating (72-21) we have .
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the constants 9,9 ,
C

,
and Cy Can be determined using the boundary

conditions of the beam .

we are interested in determining the values of Xb for which there

enlists a nonzero solution went , when beam experiences deflection
.

once such a Xb is Known I often there will be many ) ,
the buckling

load is determined from Eg . I 7.2
- 26 )
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The smallest value of Noi which is given by the

Smallest Value of Xy is the critical buckling load .

the buckling shape Kormade) is given by Wen ) .



Example : Simply supported beam .
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and the buckling load is given by
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the critical buckling load becomes ( n = I )
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Eseample : clamped beam
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Expressing these equations in terms of constants C
,

and Ewe obtain

C
,

( Sindbad - X boy + Cz ( Silba - 1)

=DC
,

( Shiba ) -
t ) - Cz Sindbas = O

For a nontrivial solution
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The solution of equation CA ) , known as the



characteristic equation , gives the eigenvalues en ya ,

and the buckling load is calculated from Eq . f.2-271
.
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the critical ( smallest ) buckling load is
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7.2-4 Vibration

For natural vibration
,

the solution is assumed to be periodic
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In . the absence of applied transverse load q ,
the governing

equation 17.2- 8) reduces tri
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The general solution of Eq ft. 2-30 ) is :
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Vibration solution for CLPT beam
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and C
, , Cz ,

C
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and Cy are constants , which are to be determined

using the boundary conditions .
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Substituting for p , q and r from Eg . 17.2-31 ) in Eq . 17.2-33 )

and solving for w } we obtain
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when the applied denial load is zero
,

the frequency of vibration

Can be calculated from

(7.2-35)

It is clear from the first empress inn that rotary inertia

decreases the frequency of natural vibration
.
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rotary inertia is neglected ,
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