Composites
Lesson 21

7.2-3 Buckling

In a beam subjected to axial compressive la ad $\hat{N}_{x}=-N_{x}^{0}$, if the small aditional disturbance results in a large response and the beam does not return to its original equilibrium configuration, the beam is said to be unstable. The onset of instability is called buckling

$$
(7.2 .8)=\frac{d^{4} w}{d x^{4}}+\frac{b N_{x}^{n}}{E_{x}^{b} I_{y}} \frac{d^{2} w}{d x^{2}}=0
$$ Buckling Eq.

for CLPT beam. (7.2-21)

$$
\begin{gathered}
w_{0}=w_{0}^{e}+\stackrel{w}{w}^{\longrightarrow \text { buck il }} \\
\quad L_{\text {prebuckling }}
\end{gathered}
$$

w_{0} and w_{0}^{e} satisfy Eq. $(7 \cdot 2-21)$ too.

$$
\begin{align*}
& E_{x}^{b} I_{y} \frac{d^{4} w_{0}}{d x^{4}}+b N_{x}^{0} \frac{d^{2} w_{0}}{d x^{2}}=0 \tag{7.2.22}\\
& E_{x}^{b} I_{y} \frac{d^{4} w_{0}^{e}}{d x^{4}}+b N_{x}^{0} \frac{d^{2} w_{0}^{e}}{d x^{2}}=0 \tag{7.2-23}
\end{align*}
$$

By integrating $(7.2-21)$ we have.

$$
\begin{equation*}
\frac{d^{2} w}{d x^{2}}+\frac{b N_{x}^{0}}{E_{x}^{b} I_{j}} w=K_{1} x+K_{2} \tag{7.2-24}
\end{equation*}
$$

General Solution for this equation is:

$$
(7.2-25)
$$

$$
w(x)=c_{1} \sin \left(\lambda_{b} x\right)+c_{2} s x\left(\lambda_{b} x\right)+c_{3} x+c_{4}
$$

where

$$
\lambda_{b}^{2}=\frac{b N_{x}^{0}}{E_{n}^{b} I_{j}}, c_{3}=\frac{k_{1}}{\lambda_{b}{ }^{2}}, c_{4}=\frac{k_{2}}{\lambda_{b}{ }^{2}} \text { (7.2.26) }
$$

The constants c_{1}, c_{2}, c_{3} and c_{4} can be determined using the boundary Conditions of the beam.
we are interested in determining the values of λ_{b} for which there exists a nonzero solution $W(x)$, when beam experiences deflection. once such $a \lambda_{b}$ is known (often there will be many), the buckling load is determined from Eq. $(7.2-26)$

$$
\begin{equation*}
N_{x}^{0}=\left(\frac{E_{x}^{b} I_{y}}{b}\right) \lambda_{b}^{2} \tag{7.2-27}
\end{equation*}
$$

The smallest value of N_{x}^{9} which is given by the smallest value of λ_{b} is the critical buckling load. The buckling shape (or made) is given by $W(n)$.

Example: Simply supported beam.

$$
w_{0}(0)=0, w_{0}(a)=0, M_{x}(0)=0, M_{x}(a)=0
$$

These boundary conditions imply

$$
w(0)=0, W(a)=0, \frac{d^{2} w}{d x^{2}}(0)=0, \frac{d^{2} w}{d x^{2}}(a)=0
$$

$$
W(0)=0=C_{2}+C_{4}=0
$$

$w^{\prime \prime}(0)=0: \quad-c_{2} \lambda_{b}^{2}=0$ which implies $C_{2}=0, C_{4}=0$

$$
w(a)=0: \quad c_{1} \sin \left(\lambda_{b} a\right)+c_{3} a=0
$$

$w^{\prime \prime}(a)=0: \quad c_{1} \sin \left(\lambda_{b} a\right)=0$ which implies $c_{3}=0$
For a nontrivial solution, the condition

$$
c_{1} \sin \left(\lambda_{b} a\right)=0 \text { implies that } \lambda_{b} a=n \pi, n=1,2, \cdots
$$

and the buckling load is given by

$$
\begin{aligned}
b N_{x}^{0} & =E_{x}^{b} I_{y}\left(\frac{n \pi}{a}\right)^{2} \\
\rightarrow \quad w(x) & =c_{1} \sin \frac{n \pi x}{a}, c_{1} \neq 0
\end{aligned}
$$

The critical buckling lad becomes ($n=1$)

$$
N_{c r}=\left(\frac{\pi}{a}\right)^{2} \frac{E_{x}^{b} I_{y}}{b}=\frac{\pi^{2}}{12} \frac{E_{x}^{b} h^{3}}{a^{2}}
$$

and the buckling made (eigenfunction) associated with it is

$$
w(x)=c_{1} \sin \frac{\pi x}{a}
$$

Example: clamped beam

$$
w_{0}(0)=0, \frac{d w_{0}}{d x}(0)=0, \quad w_{0}(a)=0, \frac{d w_{0}}{d x}(a)=0
$$

which can be expressed as

$$
W(0)=0, \frac{d W}{d x}(0)=0, W(a)=0, \quad \frac{d w}{d x}(a)=0
$$

we have

$$
\begin{array}{ll}
w(a)=0: & c_{2}+c_{4}=0 \\
w^{\prime}(a)=0: & c_{1} \lambda_{b}+c_{3}=0 \\
w(a)=0: & c_{1} \sin \left(\lambda_{b} a\right)+c_{2} \cos \left(\lambda_{b} a\right)+c_{3} a+c_{4}=0 \\
w^{\prime}(a)=0: & \left.c_{1} \lambda_{b} \delta\right)\left(\lambda_{b} a\right)-c_{2} \lambda_{b} \sin \left(\lambda_{b} a\right)+c_{3}=0
\end{array}
$$

Expressing these equations in terms of constants C_{1} and C_{2} we obtain

$$
\begin{aligned}
& c_{1}\left(\sin \left(\lambda_{b} a\right)-\lambda_{b} a\right)+c_{2}\left(\sin \lambda_{b} a-1\right)=0 \\
& c_{1}\left(\operatorname{sis}\left(\lambda_{b} a\right)-1\right)-c_{2} \sin \left(\lambda_{b} a\right)=0
\end{aligned}
$$

For a nontrivial solution, the determinate of the coefficient matrix of the above two equations must be zero (eigenvalue

$$
\begin{aligned}
& \left|\begin{array}{ll}
\sin \left(\lambda_{b} a\right)-\lambda_{b} a & \sin \left(\lambda_{b} a\right)-1 \\
\sin \left(\lambda_{b} a\right)-1 & -\sin \left(\lambda_{b} a\right)
\end{array}\right|=0(*) \\
& \rightarrow \lambda_{b} a \sin \left(\lambda_{b} a\right)+2 \operatorname{cs}\left(\lambda_{b} a\right)-2=0
\end{aligned}
$$

characteristic equation
The solution of equation (*), known as the
characteristic equation, gives the eigenvalues $e_{n} \equiv \lambda_{b} a$, and the buckling load is calculated from Eq. $(7.2-27)$.
A plat of the function $f\left(e_{n}\right)=e_{n} \sin \left(e_{n}\right)+2 \operatorname{si}\left(e_{n}\right)-2$ against e_{n} shows that $f\left(e_{n}\right)$ is zero at

$$
e_{n}=0,6.2832(=2 \pi), 8.9868,12.5664\left(=4 \pi 1, \ldots\left(\lambda_{2 n-1 a}=2 n \pi\right) .\right.
$$

Hence, the critical (smallest) buckling load is

$$
\begin{aligned}
N_{c r} & =\left(\frac{e_{n}}{a}\right)^{2}\left(\frac{E_{x}^{b} I_{y}}{b}\right)=\left(\frac{2 \pi}{a}\right)^{2}\left(\frac{E_{x}^{b} I_{y}}{b}\right) \\
& =\left(\frac{\pi^{2}}{3}\right)\left(\frac{E_{x}^{b} h^{3}}{a^{2}}\right)
\end{aligned}
$$

Table 4.2.2: Values of the constants and eigenvalues for buckling of laminated composite beams with various boundary conditions $\left(\lambda^{2} \equiv\right.$ $\left.b N_{x x}^{0} / E_{x x}^{b} I_{y y}=\left(e_{n} / a\right)^{2}\right)$. The classical laminate theory is used.

End conditions at	Constants †	Characteristic equation $x=0$ and $x=a$
and values* of $e_{n} \equiv \lambda_{n} a$		

- Hinged-Hinged

- Fixed-Fixed

- Fixed-Free

- Free-Free

- Hinged-Fixed

$$
c_{1} \neq 0, c_{2}=c_{3}=c_{4}=0 \quad \sin e_{n}=0
$$

$$
e_{n}=n \pi
$$

$$
\begin{array}{ll}
c_{1}=1 /\left(\sin e_{n}-e_{n}\right) & e_{n} \sin e_{n}=2\left(1-\cos e_{1}\right. \\
c_{3}=-1 / \lambda_{n} & e_{n}=2 \pi, 8.987,4 \pi, \ldots \\
c_{2}=-c_{4}=1 /\left(\cos e_{n}-1\right) &
\end{array}
$$

$$
\begin{aligned}
& c_{1}=c_{3}=0 \\
& c_{2}=-c_{4} \neq 0
\end{aligned}
$$

$$
\cos e_{n}=0
$$

$$
e_{n}=(2 n-1) \pi / 2
$$

$$
\sin e_{n}=0
$$

$$
c_{1}=c_{3}=0
$$

$$
c_{2} \neq 0, c_{4} \neq 0
$$

$$
e_{n}=n \pi
$$

$c_{1} / e_{n} \cos e_{n}, c_{3}=-1$

$$
\begin{aligned}
& \tan e_{n}=e_{n} \\
& e_{n}=4.493,7.725, \cdots
\end{aligned}
$$

[^0]7.2.4 vibration

For natural vibration, the solution is assumed to be periodic

$$
w_{n}(x, t)=W_{(x)} e^{i \omega t}, \quad i=\sqrt{-1} \quad(7.2-28)
$$

In the absence of applied transverse load q, the governing equation $(7.2-8)$ reduces to:

$$
E_{x}^{b} I_{y} \frac{d^{4} w}{d x^{4}}-b \hat{N}_{x} \frac{d^{2} w}{d x^{2}}=w^{2} \hat{I}_{0} w-w^{2} \hat{I}_{2} \frac{d^{2} w}{d x^{2}} \quad(7.2-29)
$$

Equation (7.2.29) has the general form

$$
p \frac{d^{4} w}{d x^{4}}+q \frac{d^{2} w}{d x^{2}}-r w=0 \quad(7 \cdot 2-30)
$$

where

$$
p=E_{u}^{b} I_{J}, q=\omega^{2} \hat{I}_{2}-b \hat{N}_{\mu}, r=\omega^{2} \hat{I}_{n} \text { (7.231) }
$$

The general solution of $E q(7.2-30)$ is:

$$
\left.w(x)=c_{1} \sin (\lambda x)+c_{2} 8\right)(\lambda x)+c_{3} \sinh \left(\mu_{x}\right)+c_{4} \sin \left(\mu_{x}\right)
$$

Vibration solution for CLPT beam

$$
\lambda=\sqrt{\frac{1}{2 p}\left(q+\sqrt{q^{2}+4 p r}\right.}, \mu=\sqrt{\frac{1}{2 p}\left(-q+\sqrt{q^{2}+4 p r}\right)}(7.2-32 b)
$$

and c_{1}, c_{2}, c_{3} and c_{4} are constants, which are to be determined using the boundary conditions.

$$
\begin{array}{r}
(7.2-32 b) \Rightarrow\left(2 p \lambda^{2}-q\right)^{2}=q^{2}+4 p r \text { or } p \lambda^{4}-q \lambda^{2}-r=0 \\
\left(2 p \mu^{2}+q\right)=q^{2}+4 p r \text { or } p \mu^{4}+q \mu^{2}-r=0 \\
(7.2 .33 a, h)
\end{array}
$$

Substituting for p, q and from Eq. (7.2-31) in Eq. (7.2-33) and solving for ω^{2}, we obtain

$$
\begin{aligned}
& \omega^{2}=\lambda^{4}\left(\frac{E_{x x}^{b} I_{y y}}{\hat{I}_{0}}\right)\left(\frac{1+P_{1}}{1+R_{1}}\right), \quad P_{1}=\frac{b \hat{N}_{x x}}{E_{x x}^{b} I_{y y} \lambda^{2}}, \quad R_{1}=\frac{\hat{I}_{2}}{\hat{I}_{0}} \lambda^{2}(7.2-34 \mathrm{a}) \\
& \omega^{2}=\mu^{4}\left(\frac{E_{x x}^{b} I_{y y}}{\hat{I}_{0}}\right)\left(\frac{1-P_{2}}{1-R_{2}}\right), \quad P_{2}=\frac{b \hat{N}_{x x}}{E_{x x}^{b} y_{y y} \mu^{2}}, \quad R_{2}=\frac{\hat{I}_{2}}{\hat{I}_{0}} \mu^{2}(7.2-34 \mathrm{~b})
\end{aligned}
$$

When the applied axial load is zero, the frequency of vibration can be calculated from

$$
\omega^{2}=\lambda^{4} \frac{E_{x x}^{b} I_{y y}}{\hat{I}_{0}}\left(1-\frac{\hat{I}_{2} \lambda^{2}}{\hat{I}_{0}+\hat{I}_{2} \lambda^{2}}\right)=\mu^{4} \frac{E_{x x}^{b} I_{y y}}{\hat{I}_{0}}\left(1+\frac{\hat{I}_{2} \mu^{2}}{\hat{I}_{0}-\hat{I}_{2} \mu^{2}}\right) \quad(7.2-35)
$$

It is clear from the first expression that rotary inertia decreases the frequency of natural vibration. If the
rotary inertia is neglected, we hav $\lambda \equiv \mu$ and

$$
w=\lambda^{2} a_{0}, \quad a_{0}=\sqrt{\frac{E_{\gamma}^{b} I_{J}}{\hat{I}_{0}}} \quad(7.2 .36)
$$

[^0]: \dagger See Eq. (4.2.28): $W(x)=c_{1} \sin \lambda_{b} x+c_{2} \cos \lambda_{b} x+c_{3} x+c_{4}$.
 *For critical buckling load, only the first (minimum) value of $e=\lambda a$ is needed.

