Composites
Lesson 20
.
In order to cast Eq. (7.2-4) in the familiar form used in the Classical Euler Bernoulli beam theory, we introduce the quantities:

$$
\begin{align*}
& M=b M_{x x}, Q=b Q_{x}, E_{x}^{b}=\frac{12}{h^{3} D_{11}^{*}}=\frac{b}{I_{y} D_{11}^{*}}, I_{y}=\frac{b h^{3}}{12}(7.2 .5) \\
\Rightarrow & \frac{\partial^{2} w_{0}}{\partial x^{2}}=-\frac{M}{E^{b} I_{y}} \text { or } M(x)=-E I_{y} \frac{\partial^{2} w_{0}}{\partial x^{2}} \quad(7.2 .6) \tag{7.2.6}
\end{align*}
$$

b: with, h :thickness
the equation of motion of laminated beams can be obtained directly from Eq. $(6.1-21)$ by setting all terms involving differentiation with respect to y to ${ }^{\text {zero }}$ (only the third ane).

$$
\frac{\partial^{2} M_{x x}}{\partial x^{2}}+\hat{N}_{x} \frac{\partial^{2} w_{0}}{\partial x^{2}}+q=I_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}}-I_{2} \frac{\partial^{4} w_{0}}{\partial x^{2} \partial t^{2}} \quad(F, 2-F)
$$

for symmetrically laminated long beams, bending and extention of beam are independent to each others, thus we can use (7.2-4)

$$
\xrightarrow[7.2-4]{7 \cdot 2-7}-\frac{\partial^{2}}{\partial x^{2}}\left(E_{x}^{b} I_{y} \frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+b \hat{N}_{x} \frac{\partial^{2} w_{0}}{\partial x^{2}}+\hat{q}=\hat{I}_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}}-\hat{I}_{2} \frac{\partial^{4} w_{0}}{\partial x^{2} \partial t^{2}}
$$

Governing Eq. of CLPT Symmetric long beam where \hat{N}_{x} is the applied axial load, and

$$
\hat{q}=b q, \hat{I}_{0}=b I_{0}, \hat{I}_{2}=b I_{2}, I_{i}=b \int_{-h / 2}^{h / 2} \rho z^{i} d z{ }_{i=0,1,2}^{h}
$$

Boundary Conditions:
Geometric $\left.W_{0}\right) \frac{\partial W_{0}}{\partial x}$ specify (7.2-10)
Force $\quad Q \equiv \frac{\partial M}{\partial x}, M$ specify
7.2.2 Bending

For static bending without the axial force, $\hat{N}_{x}=0$, Eqs. (7.2-6) and $(7,2,8)$ take the farm:

$$
\frac{d^{2} w_{0}}{d x^{x}}=-\frac{M}{E_{x}^{b} I_{J}}, E_{x}^{b} I_{y} \frac{d^{4} w_{0}}{d x^{4}}=\tilde{q} \quad(7.2-11 a, b)
$$

where $\hat{y}=b q$. Equation (a) is the most convenient when it is possible to express the bending moment M in terms of the applied lands. For indeterminate beams, use of $E q$. (b) is is mare convenient.

$$
\begin{aligned}
& \text { General Solution } \\
& (7.2-11 a) \longrightarrow E_{x}^{b} I_{J} w_{0}(x)=-\int_{0}^{x}\left[\int_{0}^{\eta} m(\xi) d \xi\right] d \eta+b_{1} x+b_{2}
\end{aligned}
$$

$$
\begin{aligned}
(7.2-11 b) \longrightarrow E_{x x}^{b} I_{y y} w_{0}(x)= & \int_{0}^{x}\left\{\int_{0}^{\xi}\left[\int_{0}^{\eta}\left(\int_{0}^{\zeta} \hat{q}(\mu) d \mu\right) d \zeta\right] d \eta\right\} d \xi \\
& +c_{1} \frac{x^{3}}{6}+c_{2} \frac{x^{2}}{2}+c_{3} x+c_{4}
\end{aligned}
$$

calculation of stresses

$$
\begin{aligned}
& \{\sigma\}_{K}=[\bar{Q}]_{K}\{\varepsilon\} \\
& \{\sigma\}_{K}=z[\bar{Q}]_{K}\left\{\begin{array}{l}
-\frac{\partial^{2} W_{9}}{\partial x^{2}}+z\{\varepsilon\}^{(1)} \\
-\frac{\partial^{2} W_{0}}{\partial y^{2}} \\
-2 \frac{\partial^{2} W_{0}}{\partial x \partial y}
\end{array}\right\}
\end{aligned}
$$

on the other hand, from (7.2.41)

$$
\begin{cases}\sigma\}_{k}=\frac{Z}{b}[\bar{Q}]_{K}\left[D^{*}\right] & (7.2-15) \\ & \left(n_{n}=\frac{M}{b}\right)\end{cases}
$$

$$
\begin{align*}
& \sigma_{x x}^{(k)}(x, z)=\frac{M(x) z}{b}\left(\bar{Q}_{11}^{(k)} D_{11}^{*}+\bar{Q}_{12}^{(k)} D_{12}^{*}+\bar{Q}_{16}^{(k)} D_{16}^{*}\right) \\
& \sigma_{y y}^{(k)}(x, z)=\frac{M(x) z}{b}\left(\bar{Q}_{12}^{(k)} D_{11}^{*}+\bar{Q}_{22}^{(k)} D_{12}^{*}+\bar{Q}_{26}^{(k)} D_{16}^{*}\right) \\
& \sigma_{x y}^{(k)}(x, z)=\frac{M(x) z}{b}\left(\bar{Q}_{16}^{(k)} D_{11}^{*}+\bar{Q}_{26}^{(k)} D_{12}^{*}+\bar{Q}_{66}^{(k)} D_{16}^{*}\right)
\end{align*}
$$

In the classical beam theory \mathcal{J}, the inter laminar $\operatorname{stresses}\left(\sigma_{x_{z}}, \sigma_{z t}\right)$ are identically zero when computed using the constitutive Eqs. However, these stresses do exist in reality, and they can be responsible for failures in composite laminates used. Interlaminar stresses may be computed using the equilibrium equations of 3-D elasticity:

$$
\begin{aligned}
& 0=\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+\frac{\partial \sigma_{x z}}{\partial z} \\
& 0=\frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{y z}}{\partial z} \quad \text { (7.2.17) } \\
& 0=\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}
\end{aligned}
$$

$$
\Rightarrow \quad \begin{align*}
\sigma_{x z}^{(k)} & =-\int_{z_{k}}^{z}\left(\frac{\partial \sigma_{x x}^{(k)}}{\partial x}+\frac{\partial \sigma_{x y}^{(k)}}{\partial y}\right) d z+G^{(k)} \tag{7.2-18}\\
\sigma_{y z}^{(k)} & =-\int_{z_{k}}^{z}\left(\frac{\partial \sigma_{x y}^{(k)}}{\partial x}+\frac{\partial \sigma_{y y}^{(k)}}{\partial y}\right) d z+F^{(k)} \\
\sigma_{z z}^{(k)} & =-\int_{z_{k}}^{z}\left(\frac{\partial \sigma_{x z}^{(k)}}{\partial x}+\frac{\partial \sigma_{y z}^{(k)}}{\partial y}\right) d z+H^{(k)}
\end{align*}
$$

where $\left(\sigma_{x}^{(k)}, \sigma_{y}^{(k)}, \sigma_{x y}^{(k)}\right)$ are known from Eq. (7.2-16) and $G^{(k)}, F^{(K)}$, and $H^{(K)}$ are constants.
Far beams, all variables are independet of y and $v=0$. Hence, derivatives with respect to y are zero. For example
from Eq. (7.2.18) we obtain:

$$
\begin{aligned}
& \sigma_{x z}^{(k)}(x, z)=-Q_{x}(x)\left(\bar{Q}_{11}^{(k)} D_{11}^{*}+\bar{Q}_{12}^{(k)} D_{12}^{*}+\bar{Q}_{16}^{(k)} D_{16}^{*}\right)\left(\frac{z^{2}-z_{k}^{2}}{2}\right)+G^{(k)} \text { (7.2-19) } \\
& \sigma_{z z}^{(k)}(x, z)=-\frac{d Q_{x}}{d x}\left(\bar{Q}_{11}^{(k)} D_{11}^{*}+\bar{Q}_{12}^{(k)} D_{12}^{*}+\bar{Q}_{16}^{(k)} D_{16}^{*}\right)\left(\frac{z^{3}-z_{k}^{3}}{6}\right)+H^{(k)}
\end{aligned}
$$

From the tap and bottom surface boundary conditions we can Find $G^{(1)}$ and $H^{(1)}$. Here we have

$$
G^{(1)}=0 \text { and } H^{(1)}=0
$$

constants $G^{(k)}$ and $H^{(k)}$ for $K=2,3, \ldots$ are determined by requiring that $\sigma_{x z}^{(k)}$
 and $\sigma_{z z}^{(k)}$ be cantinaus at the layer interfaces

$$
\sigma_{x z}^{(k)}\left(x, z_{k+1}\right)=\sigma_{x z}^{(k+1)}\left(x, z_{k+1}\right), \quad \sigma_{z z}^{(k)}\left(x, z_{k+1}\right)=\sigma_{z z}^{(k+1)}\left(x, z_{k+1}\right)
$$

This gives, for $k=1,2, \ldots$, the result

$$
\begin{align*}
G^{(k+1)} & =-Q_{x}(x)\left(\bar{Q}_{11}^{(k)} D_{11}^{*}+\bar{Q}_{12}^{(k)} D_{12}^{*}+\bar{Q}_{16}^{(k)} D_{16}^{*}\right)\left(\frac{z_{k+1}^{2}-z_{k}^{2}}{2}\right)+G^{(k)} \\
& =\sigma_{x z}^{(k)}\left(x, z_{k+1}\right)
\end{align*}
$$

$$
\begin{align*}
H^{(k+1)} & =-\frac{d Q_{x}}{d x}\left(\bar{Q}_{11}^{(k)} D_{11}^{*}+\bar{Q}_{12}^{(k)} D_{12}^{*}+\bar{Q}_{16}^{(k)} D_{16}^{*}\right)\left(\frac{z_{k+1}^{3}-z_{k}^{3}}{6}\right)+H^{(k)} \\
& =\sigma_{z z}^{(k)}\left(x, z_{k+1}\right)
\end{align*}
$$

Example: Three-paint-bending

$M(n)=\frac{\left(F_{0} b\right) x}{2}$, for $a \leqslant n \leqslant \frac{a}{2}$
$(7.2-11 a) \longrightarrow$

$$
E_{x}^{b} I_{y} w_{0}(x)=-\frac{F_{0} b x^{3}}{12}+c_{1} x+c_{2}
$$

c_{1}, c_{2} can be evaluated using the bound a Conditions:

$$
w_{0}(0)=0,\left.\frac{d w_{0}}{d x}\right|_{a_{2}}=0
$$

$$
w_{0}(x)=\frac{F_{0} b a^{3}}{48 E I_{]}}\left[3\left(\frac{x}{a}\right)-4\left(\frac{x}{a}\right)^{3}\right]
$$

The maximum in-plane stress σ_{x} accurs at $x=\frac{a}{2}$

$$
\xrightarrow{(7.2-16)} \sigma_{x}^{(k)}\left(\frac{a}{2}, z\right)=\frac{F_{0} a z}{4}\left(\bar{Q}_{11}^{(k)} D_{11}^{*}+\bar{Q}_{12}^{(k)} D_{12}^{*}+\bar{Q}_{16}^{(k)} D_{16}^{*}\right)
$$

Example:

By using (7.2-11 b) we have:

$$
E I_{y} w_{0}(x)=\frac{q_{0} b x^{4}}{24}+c_{1} \frac{x^{3}}{6}+C_{2} \frac{x^{2}}{2}+c_{3} x+c_{4}
$$

For the full beam case we have:

$$
w_{0}(0)=0, w_{0}(a)=0,\left.\frac{d w_{0}}{d x}\right|_{0, a}=0
$$

For the half beam model we have

$$
w_{0}(0)=0,\left.\frac{d w_{0}}{d x}\right|_{0}=0,\left.\frac{d w_{0}}{d x}\right|_{a / 2}=0
$$

$$
Q\left(\frac{a}{2}\right)=\frac{d x}{d x}=E_{x} I y \frac{d^{5} w_{0}}{d x^{3}}\left(\frac{a}{2}\right)=0
$$

In the bath cases we obtain::

$$
W_{0}(x)=\frac{q_{0} b a^{4}}{24 E I}\left[\left(\frac{x}{a}\right)^{2}-\left(\frac{x}{a}\right)\right]^{2}
$$

$$
\begin{aligned}
& M(x)=-\frac{q_{0} b a^{2}}{12}\left[1-6\left(\frac{x}{a}\right)+a\left(\frac{x}{a}\right)^{2}\right], M_{\max }=-\frac{q_{0} b a^{2}}{12} \\
& \sigma_{x}^{(k)}(0, z)=-\frac{q_{0} a^{2} z}{12}\left(Q_{11}^{(k)} D_{11}^{*}+Q_{12}^{(k)} D_{12}^{*}+Q_{16}^{(k)} D_{16}^{*}\right)
\end{aligned}
$$

- Hinged-Hinged

Central point load

Uniform load

- Fixed-Fixed

Central point load

Uniform load

- Fixed-Free
Point load at free end

$$
\frac{c_{1}}{6}\left[3\left(\frac{x}{a}\right)^{2}-\left(\frac{x}{a}\right)^{3}\right] \quad w_{\max }^{a}=\frac{1}{3} c_{1}, ~ M_{\max }^{0}=c_{3} ~ \$ ~ \$
$$

Uniform load
$\frac{c_{2}}{24}\left[6\left(\frac{x}{a}\right)^{2}-4\left(\frac{x}{a}\right)^{3}+\left(\frac{x}{a}\right)^{4}\right]$
$w_{\text {max }}^{a}=\frac{1}{8} c_{2}$
$M_{\text {max }}^{0}=\frac{1}{2} c_{4}$

