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In order to cast Eq . ( 7.2-4 ) in the familiar farm used in the

classical Euler - Bernoulli beam theory ,
we introduce the quantities :
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h : thickness

the equation of motion of laminated beams can be

obtained directly from Eq . ( 6. I -21 ) by setting all

terms involving differentiation with respect to y tote "

( only the third one ) .
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for symmetrically laminated long beams
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of beam are independent to each others
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Boundary Conditions :
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7.2-2 Bending
For static bending without the anial force ,
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where I = by . Equation la ) is the most convenient when it is

possible to empress the bending moment M in terms of the applied

loads
. . For indeterminate beams

,
use of Eq .

( b ) is

is more convenient .

General Solution (7.2-12)
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calculation of stresses
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( F 2 - 161

In the classical beam theory ,
the inter laminar stresses ( one , ozzy

are identically Zero when computed using the constitutive Egs .

However
,

these Stresses do en ist  in reality ,
and they can be respansies,

for failures in composite laminates used . Inter laminar Stresses

may be computed using the equilibrium equations

n f 3-D elasticity .
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Far beams
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all variables are in depend et of y and U
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derivatives with respect to y are Zero . For en ample
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From the top and bottom surface boundary Conditions we can

find Gc " and It"? Here we have
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Example : three - paint - bending
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Eaample :

By using 17.2 - H b) we have :
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For the full beam case we have :
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