Composites
Lesson 19

From (6.2.8) by using integrate by parts to revile the virtual generalized displacements $\left(\delta u_{0}, \delta V_{0}, \delta w_{0}, \delta \phi_{x}, \delta \phi_{y}\right)$ we obtain:

$$
\begin{align*}
0=\int_{0}^{T} \int_{\Omega_{0}}[& -\left(N_{x x, x}+N_{x y, y}-I_{0} \ddot{u}_{0}-I_{1} \ddot{\phi}_{x}\right) \delta u_{0} \\
& -\left(N_{x y, x}+N_{y y, y}-I_{0} \ddot{v}_{0}-I_{1} \ddot{\phi}_{y}\right) \delta v_{0} \tag{6.2.15}\\
& -\left(M_{x x, x}+M_{x y, y}-Q_{x}-I_{2} \ddot{\phi}_{x}-I_{1} \ddot{u}_{0}\right) \delta \phi_{x} \\
& -\left(M_{x y, x}+M_{y y, y}-Q_{y}-I_{2} \ddot{\phi}_{y}-I_{1} \ddot{v}_{0}\right) \delta \phi_{y} \\
& \left.-\left(Q_{x, x}+Q_{y, y}+\mathcal{N}\left(w_{0}\right)+q-I_{0} \ddot{w}_{0}\right) \delta w_{0}\right] d x d y \\
+\int_{0}^{T} \int_{\Gamma}[& \left(N_{n n}-\hat{N}_{n n}\right) \delta u_{n}+\left(N_{n s}-\hat{N}_{n s}\right) \delta u_{s}+\left(Q_{n}-\hat{Q}_{n}\right) \delta w_{0} \\
& \left.+\left(M_{n n}-\hat{M}_{n n}\right) \delta \phi_{n}+\left(M_{n s}-\hat{M}_{n s}\right) \delta \phi_{s}\right] d s d t
\end{align*}
$$

$$
\begin{align*}
& \mathcal{N}\left(w_{0}\right)=\frac{\partial}{\partial x}\left(N_{x x} \frac{\partial w_{0}}{\partial x}+N_{x y} \frac{\partial w_{0}}{\partial y}\right)+\frac{\partial}{\partial y}\left(N_{x y} \frac{\partial w_{0}}{\partial x}+N_{y y} \frac{\partial w_{0}}{\partial y}\right) \tag{6.2-16}\\
& \mathcal{P}\left(w_{0}\right)=\left(N_{x x} \frac{\partial w_{0}}{\partial x}+N_{x y} \frac{\partial w_{0}}{\partial y}\right) n_{x}+\left(N_{x y} \frac{\partial w_{0}}{\partial x}+N_{y y} \frac{\partial w_{0}}{\partial y}\right) n_{y}
\end{align*}
$$

The Euler-lagrage equations are obtained by setting the coefficients of $\delta u_{0}, \delta v_{0}, \delta w_{0}$, and $\delta \phi_{x}$ and $\delta \phi_{y}$ in Ω_{0} to zero separately:

$u_{0}:$	$\frac{\partial N_{x x}}{\partial x}+\frac{\partial N_{x y}}{\partial y}=I_{0} \frac{\partial^{2} u_{0}}{\partial t^{2}}+I_{1} \frac{\partial^{2} \phi_{x}}{\partial t^{2}}$
$\delta v_{0}:$	$\frac{\partial N_{x y}}{\partial x}+\frac{\partial N_{y y}}{\partial y}=I_{0} \frac{\partial^{2} v_{0}}{\partial t^{2}}+I_{1} \frac{\partial^{2} \phi_{y}}{\partial t^{2}}$
$\delta w_{0}:$	$\frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}+\mathcal{N}\left(w_{0}\right)+q=I_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}}$
$\delta \phi_{x}:$	$\frac{\partial M_{x x}}{\partial x}+\frac{\partial M_{x y}}{\partial y}-Q_{x}=I_{2} \frac{\partial^{2} \phi_{x}}{\partial t^{2}}+I_{1} \frac{\partial^{2} u_{0}}{\partial t^{2}}$
$\delta \phi_{y}:$	$\frac{\partial M_{x y}}{\partial x}+\frac{\partial M_{y y}}{\partial y}-Q_{y}=I_{2} \frac{\partial^{2} \phi_{y}}{\partial t^{2}}+I_{1} \frac{\partial^{2} v_{0}}{\partial t^{2}}$

(6.2-17)

Equations of Motion for FSDT Plates
primary variables: $\quad u_{n}, u_{s}, w_{0}, \phi_{n}, \phi_{s}$
secondary Variables: $N_{n}, N_{n s}, Q_{n}, M_{n}, M_{n s}$
The natural b.c. are:

$$
\begin{align*}
& N_{n}-\hat{N}_{n}=0, N_{n s}-\hat{N}_{n s}=0, Q_{n}-\hat{Q}_{n}=0 \tag{6.2-19}\\
& M_{n}-\hat{M}_{n}=0, M_{n s}-\hat{M}_{n s}=0
\end{align*}
$$

where

$$
Q_{n}=Q_{n} n_{n}+Q_{y} n_{y}+P\left(w_{0}\right)
$$

6.2.3 Laminate Constitutive Equations we had

$$
\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{x y}
\end{array}\right\}=[\bar{Q}]_{K}\left(\left\{\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}-\left\{\begin{array}{l}
\alpha_{x} \\
\alpha_{y} \\
\alpha_{x y}
\end{array}\right\} \Delta t\right)-\left[\begin{array}{lll}
0 & 0 & \bar{e}_{31} \\
0 & 0 & \bar{e}_{32} \\
0 & 0 & e_{36}
\end{array}\right]\left\{\begin{array}{l}
E_{x} \\
\epsilon_{y} \\
\epsilon_{z}
\end{array}\right\}_{K}
$$

$$
\begin{aligned}
& \text { By integrating: } \\
& \left\{\begin{array}{l}
N_{x} \\
N_{y} \\
N_{x y}
\end{array}\right\}=[A]\left\{\begin{array}{l}
\varepsilon_{x}^{0} \\
\varepsilon_{y}^{0} \\
\gamma_{x y}^{0}
\end{array}\right\}+[B]\left\{\begin{array}{l}
\varepsilon_{x}^{(1)} \\
\varepsilon_{y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\} \quad(6.2-21) \\
& \left\{\begin{array}{l}
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right\}=[B]\left\{\begin{array}{l}
\varepsilon_{x}^{0} \\
\varepsilon_{j}^{0} \\
\gamma_{x y}^{0}
\end{array}\right\}+[D]\left\{\begin{array}{l}
\varepsilon_{x}^{(1)} \\
\varepsilon_{y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\} \quad(6.2-22)
\end{aligned}
$$

In FSDT The A, B and D stiffnes matrices don't change from CLPT ones.

$$
\begin{aligned}
& \left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{16} \\
A_{12} & A_{22} & A_{26} \\
A_{16} & A_{26} & A_{66}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial u_{0}}{\partial x}+\frac{1}{2}\left(\frac{\partial w_{0}}{\partial x}\right)^{2} \\
\frac{\partial v_{0}}{\partial y}+\frac{1}{2}\left(\frac{\partial w_{0}}{\partial y}\right)^{2} \\
\frac{\partial u_{0}}{\partial y}+\frac{\partial v_{0}}{\partial x}+\frac{\partial w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y}
\end{array}\right\} \\
& +\left[\begin{array}{lll}
B_{11} & B_{12} & B_{16} \\
B_{12} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial \phi_{x}}{\partial x} \\
\frac{\partial \phi_{y}}{\partial y} \\
\frac{\partial \phi_{x}}{\partial y}+\frac{\partial \phi_{y}}{\partial x}
\end{array}\right\} \\
& \left\{\begin{array}{l}
M_{x x} \\
M_{y y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
B_{11} & B_{12} & B_{16} \\
B_{12} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial u_{0}}{\partial x}+\frac{1}{2}\left(\frac{\partial w_{0}}{\partial x}\right)^{2} \\
\frac{\partial v_{0}}{\partial y}+\frac{1}{2}\left(\frac{\partial v_{0}}{\partial y}\right)^{2} \\
\frac{\partial u_{0}}{\partial y}+\frac{\partial v_{0}}{\partial x}+\frac{\partial w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y}
\end{array}\right\} \\
& +\left[\begin{array}{ccc}
D_{11} & D_{12} & D_{16} \\
D_{12} & D_{22} & D_{26} \\
D_{16} & D_{26} & D_{66}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial \phi_{x}}{\partial x} \\
\frac{\partial \phi_{y}}{\partial y} \\
\frac{\partial \phi_{x}}{\partial y}+\frac{\partial \phi_{y}}{\partial x}
\end{array}\right\} \\
& \left\{\begin{array}{l}
Q_{y} \\
Q_{x}
\end{array}\right\}=K\left[\begin{array}{ll}
A_{44} & A_{45} \\
A_{45} & A_{55}
\end{array}\right]\left\{\begin{array}{l}
\frac{\partial w_{0}}{\partial y}+\phi_{y} \\
\frac{\partial w_{0}}{\partial x}+\phi_{x}
\end{array}\right\}
\end{aligned}
$$

(6.2.23)

Constitutive Eqs. fo FSDT
6.2.4 Equations of Motion in Terms of Displacements

The equations of Mation (6.2-17) Can be expressed in term s of displacements $\left(u_{n}, v_{a}, w_{0}, \phi_{x}, \Phi_{y}\right)$ by substituting for the force and moment resultants from Eggs. $(6.2-23)$

$$
\begin{aligned}
& A_{11}\left(\frac{\partial^{2} u_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+A_{12}\left(\frac{\partial^{2} v_{0}}{\partial y \partial x}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y \partial x}\right)+ \\
& A_{16}\left(\frac{\partial^{2} u_{0}}{\partial y \partial x}+\frac{\partial^{2} v_{0}}{\partial x^{2}}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y \partial x}\right)+ \\
& B_{11} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+B_{12} \frac{\partial^{2} \phi_{y}}{\partial y \partial x}+B_{16}\left(\frac{\partial^{2} \phi_{x}}{\partial x \partial y}+\frac{\partial^{2} \phi_{y}}{\partial x^{2}}\right)+ \\
& A_{16}\left(\frac{\partial^{2} u_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right)+A_{26}\left(\frac{\partial^{2} v_{0}}{\partial y^{2}}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right)+ \\
& A_{66}\left(\frac{\partial^{2} u_{0}}{\partial y^{2}}+\frac{\partial^{2} v_{0}}{\partial x \partial y}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right)+ \\
& B_{16} \frac{\partial^{2} \phi_{x}}{\partial x \partial y}+B_{26} \frac{\partial^{2} \phi_{y}}{\partial y^{2}}+B_{66}\left(\frac{\partial^{2} \phi_{x}}{\partial y^{2}}+\frac{\partial^{2} \phi_{y}}{\partial y \partial x}\right)- \\
& \left(\frac{\partial N_{x x}^{T}}{\partial x}+\frac{\partial N_{x y}^{T}}{\partial y}\right)-\left(\frac{\partial N_{x x}^{P}}{\partial x}+\frac{\partial N_{x y}^{P}}{\partial y}\right)=I_{0} \frac{\partial^{2} u_{0}}{\partial t^{2}}+I_{1} \frac{\partial^{2} \phi_{x}}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& A_{16}\left(\frac{\partial^{2} u_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+A_{26}\left(\frac{\partial^{2} v_{0}}{\partial y \partial x}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y \partial x}\right)+ \\
& A_{66}\left(\frac{\partial^{2} u_{0}}{\partial y \partial x}+\frac{\partial^{2} v_{0}}{\partial x^{2}}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y \partial x}\right)+ \\
& B_{16} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+B_{26} \frac{\partial^{2} \phi_{y}}{\partial y \partial x}+B_{66}\left(\frac{\partial^{2} \phi_{x}}{\partial x \partial y}+\frac{\partial^{2} \phi_{y}}{\partial x^{2}}\right)+ \\
& A_{12}\left(\frac{\partial^{2} u_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right)+A_{22}\left(\frac{\partial^{2} v_{0}}{\partial y^{2}}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right)+ \\
& A_{26}\left(\frac{\partial^{2} u_{0}}{\partial y^{2}}+\frac{\partial^{2} v_{0}}{\partial x \partial y}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right)+ \\
& B_{12} \frac{\partial^{2} \phi_{x}}{\partial x \partial y}+B_{22} \frac{\partial^{2} \phi_{y}}{\partial y^{2}}+B_{26}\left(\frac{\partial^{2} \phi_{x}}{\partial y^{2}}+\frac{\partial^{2} \phi_{y}}{\partial x \partial y}\right)- \\
& \left(\frac{\partial N_{x y}^{T}}{\partial x}+\frac{\partial N_{y y}^{T}}{\partial y}\right)-\left(\frac{\partial N_{x y}^{P}}{\partial x}+\frac{\partial N_{y y}^{P}}{\partial y}\right)=I_{0} \frac{\partial^{2} v_{0}}{\partial t^{2}}+I_{1} \frac{\partial^{2} \phi_{y}}{\partial t^{2}} \\
& K A_{55}\left(\frac{\partial^{2} w_{0}}{\partial x^{2}}+\frac{\partial \phi_{x}}{\partial x}\right)+K A_{45}\left(\frac{\partial^{2} w_{0}}{\partial y \partial x}+\frac{\partial \phi_{y}}{\partial x}\right)+ \\
& K A_{45}\left(\frac{\partial^{2} w_{0}}{\partial x \partial y}+\frac{\partial \phi_{x}}{\partial y}\right)+K A_{44}\left(\frac{\partial^{2} w_{0}}{\partial y^{2}}+\frac{\partial \phi_{y}}{\partial y}\right)+ \\
& \mathcal{N}(w)+q-\left(\frac{\partial Q_{x}^{P}}{\partial x}+\frac{\partial Q_{y}^{P}}{\partial y}\right)=I_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& B_{11}\left(\frac{\partial^{2} u_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+B_{12}\left(\frac{\partial^{2} v_{0}}{\partial y \partial x}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y \partial x}\right)+ \\
& B_{16}\left(\frac{\partial^{2} u_{0}}{\partial y \partial x}+\frac{\partial^{2} v_{0}}{\partial x^{2}}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y \partial x}\right)+ \\
& D_{11} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+D_{12} \frac{\partial^{2} \phi_{y}}{\partial y \partial x}+D_{16}\left(\frac{\partial^{2} \phi_{x}}{\partial x \partial y}+\frac{\partial^{2} \phi_{y}}{\partial x^{2}}\right)+ \\
& B_{16}\left(\frac{\partial^{2} u_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right)+B_{26}\left(\frac{\partial^{2} v_{0}}{\partial y^{2}}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right)+ \\
& B_{66}\left(\frac{\partial^{2} u_{0}}{\partial y^{2}}+\frac{\partial^{2} v_{0}}{\partial x \partial y}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right)+ \\
& D_{16} \frac{\partial^{2} \phi_{x}}{\partial x \partial y}+D_{26} \frac{\partial^{2} \phi_{y}}{\partial y^{2}}+D_{66}\left(\frac{\partial^{2} \phi_{x}}{\partial y^{2}}+\frac{\partial^{2} \phi_{y}}{\partial y \partial x}\right)- \\
& K A_{55}\left(\frac{\partial w_{0}}{\partial x}+\phi_{x}\right)-K A_{45}\left(\frac{\partial w_{0}}{\partial y}+\phi_{y}\right)- \\
& \left(\frac{\partial M_{x x}^{T}}{\partial x}+\frac{\partial M_{x y}^{T}}{\partial y}\right)-\left(\frac{\partial M_{x x}^{P}}{\partial x}+\frac{\partial M_{x y}^{P}}{\partial y}-Q_{x}^{P}\right) \\
& =I_{2} \frac{\partial^{2} \phi_{x}}{\partial t^{2}}+I_{1} \frac{\partial^{2} u_{0}}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& B_{16}\left(\frac{\partial^{2} u_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+B_{26}\left(\frac{\partial^{2} v_{0}}{\partial y \partial x}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y \partial x}\right)+ \\
& B_{66}\left(\frac{\partial^{2} u_{0}}{\partial y \partial x}+\frac{\partial^{2} v_{0}}{\partial x^{2}}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y \partial x}\right)+ \\
& D_{16} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+D_{26} \frac{\partial^{2} \phi_{y}}{\partial y \partial x}+D_{66}\left(\frac{\partial^{2} \phi_{x}}{\partial x \partial y}+\frac{\partial^{2} \phi_{y}}{\partial x^{2}}\right)+ \\
& B_{12}\left(\frac{\partial^{2} u_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right)+B_{22}\left(\frac{\partial^{2} v_{0}}{\partial y^{2}}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right)+ \\
& B_{26}\left(\frac{\partial^{2} u_{0}}{\partial y^{2}}+\frac{\partial^{2} v_{0}}{\partial x \partial y}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right)+ \\
& D_{12} \frac{\partial^{2} \phi_{x}}{\partial x \partial y}+D_{22} \frac{\partial^{2} \phi_{y}}{\partial y^{2}}+D_{26}\left(\frac{\partial^{2} \phi_{x}}{\partial y^{2}}+\frac{\partial^{2} \phi_{y}}{\partial x \partial y}\right)- \\
& K A_{45}\left(\frac{\partial w_{0}}{\partial x}+\phi_{x}\right)-K A_{44}\left(\frac{\partial w_{0}}{\partial y}+\phi_{y}\right)- \\
& \left(\frac{\partial M_{x y}^{T}}{\partial x}+\frac{\partial M_{y y}^{T}}{\partial y}\right)-\left(\frac{\partial M_{x y}^{P}}{\partial x}+\frac{\partial M_{y y}^{P}}{\partial y}-Q_{y}^{P}\right) \\
& =I_{2} \frac{\partial^{2} \phi_{y}}{\partial t^{2}}+I_{1} \frac{\partial^{2} v_{0}}{\partial t^{2}}
\end{aligned}
$$

$$
(6.2-24 e)
$$

Example: cylindrical bending in FSDT $\left(\frac{\partial}{\partial y}=0\right)$

$$
\begin{aligned}
& A_{11} \frac{\partial^{2} u_{0}}{\partial x^{2}}+A_{16} \frac{\partial^{2} v_{0}}{\partial x^{2}}+B_{11} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+B_{16} \frac{\partial^{2} \phi_{y}}{\partial x^{2}}-\frac{\partial N_{x x}^{T}}{\partial x}-\frac{\partial N_{x x}^{P}}{\partial x} \\
& \quad=I_{0} \frac{\partial^{2} u_{0}}{\partial t^{2}}+I_{1} \frac{\partial^{2} \phi_{x}}{\partial t^{2}}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& A_{16} \frac{\partial^{2} u_{0}}{\partial x^{2}}+A_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}}+B_{16} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+B_{66} \frac{\partial^{2} \phi_{y}}{\partial x^{2}}-\frac{\partial N_{x y}^{T}}{\partial x}-\frac{\partial N_{x y}^{P}}{\partial x} \\
& \quad=I_{0} \frac{\partial^{2} v_{0}}{\partial t^{2}}+I_{1} \frac{\partial^{2} \phi_{y}}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& B_{11} \frac{\partial^{2} u_{0}}{\partial x^{2}}+B_{16} \frac{\partial^{2} v_{0}}{\partial x^{2}}+D_{11} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+D_{16} \frac{\partial^{2} \phi_{y}}{\partial x^{2}}-K A_{55}\left(\frac{\partial w_{0}}{\partial x}+\phi_{x}\right) \\
& -K A_{45} \phi_{y}-\frac{\partial M_{x x}^{T}}{\partial x}-\frac{\partial M_{x x}^{P}}{\partial x}+Q_{x}^{P}=I_{2} \frac{\partial^{2} \phi_{x}}{\partial t^{2}}+I_{1} \frac{\partial^{2} u_{0}}{\partial t^{2}} \\
& B_{16} \frac{\partial^{2} u_{0}}{\partial x^{2}}+B_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}}+D_{16} \frac{\partial^{2} \phi_{x}}{\partial x^{2}}+D_{66} \frac{\partial^{2} \phi_{y}}{\partial x^{2}}-K A_{44} \phi_{y} \\
& -K A_{45}\left(\frac{\partial w_{0}}{\partial x}+\phi_{x}\right)-\frac{\partial M_{x y}^{T}}{\partial x}-\frac{\partial M_{x y}^{P}}{\partial x}+Q_{y}^{P}=I_{2} \frac{\partial^{2} \phi_{y}}{\partial t^{2}}+I_{1} \frac{\partial^{2} v_{0}}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{equation*}
K A_{55}\left(\frac{\partial^{2} w_{0}}{\partial x^{2}}+\frac{\partial \phi_{x}}{\partial x}\right)+K A_{45} \frac{\partial \phi_{y}}{\partial x}+\frac{\partial}{\partial x}\left(N_{x x} \frac{\partial w_{0}}{\partial x}\right) \tag{C}
\end{equation*}
$$

$$
+q-\frac{\partial Q_{x}^{P}}{\partial x}=I_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}}
$$

5-2_5 Laminate Stiffnesses for Selected Laminates

I - Single-Laver Plates

I_ a Single Isotropic Layer
$A_{11}=\frac{E h}{1-\nu^{2}}, A_{12}=\nu A_{11}, A_{22}=A_{11}, A_{66}=\frac{1-\nu}{2} A_{11}, A_{44}=A_{55}=\frac{1-\nu}{2} A_{11}$

$$
D_{11}=\frac{E h^{3}}{12\left(1-\nu^{2}\right)}, \quad D_{12}=\nu D_{11}, \quad D_{22}=D_{11}, \quad D_{66}=\frac{1-\nu}{2} D_{11}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
A_{11} & \nu A_{11} & 0 \\
\nu A_{11} & A_{11} & 0 \\
0 & 0 & \frac{1-\nu}{2} A_{11}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\}(\mathrm{lb} / \mathrm{in} .) \\
& \left\{\begin{array}{l}
M_{x x} \\
M_{y y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
D_{11} & \nu D_{11} & 0 \\
\nu D_{11} & D_{11} & 0 \\
0 & 0 & \frac{1-\nu}{2} D_{11}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\}(\mathrm{lb}-\mathrm{in} / \mathrm{in} .) \tag{6.2-26}\\
& \left\{\begin{array}{l}
Q_{y} \\
Q_{x}
\end{array}\right\}=K \frac{1-\nu}{2}\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{11}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}(\mathrm{lb}-\mathrm{in})
\end{align*}
$$

$$
N_{x x}^{T}=N_{y y}^{T}=\frac{E \alpha}{(1-\nu)} \int_{-\frac{h}{2}}^{\frac{h}{2}} \Delta T d z, M_{x x}^{T}=M_{y y}^{T}=\frac{E \alpha}{(1-\nu)} \int_{-\frac{h}{2}}^{\frac{h}{2}} \Delta T z d z \quad(6.2-27)
$$

[-b Single Specially Orthotropic Layer
-

$$
\begin{align*}
& A_{11}=Q_{11} h, \quad A_{12}=Q_{12} h, A_{22}=Q_{22} h \\
& A_{66}=Q_{66} h, A_{44}=Q_{44} h, A_{55}=Q_{55} h \tag{6.2-28}
\end{align*}
$$

$D_{11}=\frac{Q_{11} h^{3}}{12}, \quad D_{12}=\frac{Q_{12} h^{3}}{12}, D_{22}=\frac{Q_{22} h^{3}}{12}, D_{66}=\frac{Q_{66} h^{3}}{12}$

where

$$
\begin{aligned}
& Q_{11}=\frac{E_{1}}{1-\nu_{12} \nu_{21}}, Q_{12}=\frac{\nu_{12} E_{2}}{1-\nu_{12} \nu_{21}}, Q_{22}=\frac{E_{2}}{1-\nu_{12} \nu_{21}} \\
& Q_{66}=G_{12}, Q_{44}=G_{23}, Q_{55}=G_{13} \\
& \left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}=h\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
M_{x x} \\
\left.\begin{array}{l}
M_{y y} \\
M_{x y}
\end{array}\right\}=\frac{h^{3}}{12}\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\} \\
\left\{\begin{array}{l}
Q_{y} \\
Q_{x}
\end{array}\right\}=K h\left[\begin{array}{cc}
Q_{44} & 0 \\
0 & Q_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
N_{x x}^{T} \\
N_{y y}^{T}
\end{array}\right\}=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{12} & Q_{22}
\end{array}\right]\left\{\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right\} \int_{-\frac{h}{2}}^{\frac{h}{2}} \Delta T d z \tag{6.2.31}\\
& \left\{\begin{array}{l}
M_{x x}^{T} \\
M_{y y}^{T}
\end{array}\right\}=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{12} & Q_{22}
\end{array}\right]\left\{\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right\} \int_{-\frac{h}{2}}^{\frac{h}{2}} \Delta T z d z
\end{align*}
$$

I_C Single Generally Orthotropic Layer

$$
A_{i j}=\bar{Q}_{i j} h, \quad D_{i j}=\frac{\bar{Q}_{i j} h^{3}}{12}, \quad A_{44}=h \bar{Q}_{44}, A_{55}=h \bar{Q}_{55} \quad(6.2-32)
$$

$\left\{\begin{array}{l}N_{x x} \\ N_{y y} \\ N_{x y}\end{array}\right\}=\left[\begin{array}{lll}A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66}\end{array}\right]\left\{\begin{array}{l}\varepsilon_{x x}^{(0)} \\ \varepsilon_{y y}^{(0)} \\ \gamma_{x y}^{(0)}\end{array}\right\}$

$$
(6.2-33)
$$

$\left\{\begin{array}{l}M_{x x} \\ M_{y y} \\ M_{x y}\end{array}\right\}=\left[\begin{array}{lll}D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66}\end{array}\right]\left\{\begin{array}{l}\varepsilon_{x x}^{(1)} \\ \varepsilon_{y y}^{(1)} \\ \gamma_{x y}^{(1)}\end{array}\right\}$
$\left\{\begin{array}{l}Q_{y} \\ Q_{x}\end{array}\right\}=K\left[\begin{array}{ll}A_{44} & A_{45} \\ A_{45} & A_{55}\end{array}\right]\left\{\begin{array}{l}\gamma_{y z}^{(0)} \\ \gamma_{x z}^{(0)}\end{array}\right\}$
$\left\{\begin{array}{l}N_{x x}^{T} \\ N_{y y}^{T} \\ N_{x y}^{T}\end{array}\right\}=\left[\begin{array}{lll}\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\ \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\ \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}\end{array}\right]\left\{\begin{array}{c}\alpha_{x x} \\ \alpha_{y y} \\ 2 \alpha_{x y}\end{array}\right\} \int_{-\frac{h}{2}}^{\frac{h}{2}} \Delta T d z$
$(6 \cdot 2-34)$

If the temperature increment is linear through the layer thickness, $\Delta T=T_{0}+z T_{1}$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
N_{x x}^{T} \\
N_{y y}^{T} \\
N_{x y}^{T}
\end{array}\right\}=\left[\begin{array}{lll}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{array}\right]\left\{\begin{array}{c}
\alpha_{x x} \\
\alpha_{y y} \\
2 \alpha_{x y}
\end{array}\right\} T_{0} h \\
& \left\{\begin{array}{l}
M_{x x}^{T} \\
M_{y y}^{T} \\
M_{x y}^{T}
\end{array}\right\}=\left[\begin{array}{lll}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{array}\right]\left\{\begin{array}{c}
\alpha_{x x} \\
\alpha_{y y} \\
2 \alpha_{x y}
\end{array}\right\} \frac{T_{1} h^{3}}{12}
\end{aligned}
$$

1. . Symmetric Laminates

II - a Symmetric Laminates with Multiple Isotropic Layers

$$
\begin{aligned}
& \left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
A_{11} & A_{12} & 0 \\
A_{12} & A_{11} & 0 \\
0 & 0 & A_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
M_{x x} \\
M_{y y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
D_{11} & D_{12} & 0 \\
D_{12} & D_{11} & 0 \\
0 & 0 & D_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
Q_{y} \\
Q_{x}
\end{array}\right\}=K\left[\begin{array}{cc}
A_{44} & 0 \\
0 & A_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}
\end{aligned}
$$

II-b Symmetric Laminates with Multiple Specially Orthotropic Layers

Eqs. are as the same as the $(6.2 .36)$
I-C Symmetric Laminates with Multiple Generally Orthotropic Layers
A and D are completely full.
描. Antisymmetric Laminates

$$
\left\{\begin{array}{l}
N_{x x} \tag{6.2-37}\\
N_{y y} \\
N_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
A_{11} & A_{12} & 0 \\
A_{12} & A_{22} & 0 \\
0 & 0 & A_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\}+\left[\begin{array}{lll}
B_{11} & B_{12} & B_{16} \\
B_{12} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}
\end{array}\right\} \text { (in general) }
$$

$$
\left\{\begin{array}{l}
M_{x x} \\
M_{y y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
B_{11} & B_{12} & B_{16} \\
B_{12} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\}+\left[\begin{array}{ccc}
D_{11} & D_{12} & 0 \\
D_{12} & D_{22} & 0 \\
0 & 0 & D_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\}
$$

$$
\left\{\begin{array}{l}
Q_{y} \\
Q_{x}
\end{array}\right\}=K\left[\begin{array}{cc}
A_{44} & 0 \\
0 & A_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}(0)
\end{array}\right\}
$$

III-a Antisymmetric Cross-ply Laminates

$$
\begin{align*}
& \left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
A_{11} & A_{12} & 0 \\
A_{12} & A_{22} & 0 \\
0 & 0 & A_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\}+\left[\begin{array}{ccc}
B_{11} & 0 & 0 \\
0 & -B_{11} & 0 \\
0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
M_{x x} \\
M_{y y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
B_{11} & 0 & 0 \\
0 & -B_{11} & 0 \\
0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\}+\left[\begin{array}{ccc}
D_{11} & D_{12} & 0 \\
D_{12} & D_{22} & 0 \\
0 & 0 & D_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
Q_{y} \\
Q_{x}
\end{array}\right\}=K\left[\begin{array}{cc}
A_{44} & 0 \\
0 & A_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}
\end{align*}
$$

III $-b$ Antisymmetric Angle-ply Laminates

$$
\begin{aligned}
& \left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
A_{11} & A_{12} & 0 \\
A_{12} & A_{22} & 0 \\
0 & 0 & A_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\}+\left[\begin{array}{ccc}
0 & 0 & B_{16} \\
0 & 0 & B_{26} \\
B_{16} & B_{26} & 0
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\}(6.2-\text { 39) } \\
& \left\{\begin{array}{l}
M_{x x} \\
M_{y y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
0 & 0 & B_{16} \\
0 & 0 & B_{26} \\
B_{16} & B_{26} & 0
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(0)} \\
\varepsilon_{y y}^{(0)} \\
\gamma_{x y}^{(0)}
\end{array}\right\}+\left[\begin{array}{ccc}
D_{11} & D_{12} & 0 \\
D_{12} & D_{22} & 0 \\
0 & 0 & D_{66}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x}^{(1)} \\
\varepsilon_{y y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\} \\
& \left\{\begin{array}{l}
Q_{y} \\
Q_{x}
\end{array}\right\}=K\left[\begin{array}{cc}
A_{44} & 0 \\
0 & A_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z}^{(0)} \\
\gamma_{x z}^{(0)}
\end{array}\right\}
\end{aligned}
$$

Chapter VII one, Dimensional Analysis of Laminated composite plates
7.1- Introduction
$\begin{cases}\text { Beam } & \text { The with of aplate is small compared Plane Stress } \\ \text { to the length of the plate and } q(n) .\end{cases}$ finite along the x and $q(x) .\left(\frac{\partial}{\partial y}=n\right)$

Beam
cylindrical
governing $\rightarrow \begin{cases}\text { exact solution } & \begin{array}{l}\text { satisfies gov. Eqs. \& bic\& initial c. } \\ \text { exactly }\end{array} \\ \text { numerical solution } \begin{array}{l}\text { satisfie } \\ \text { approximately }\end{array}\end{cases}$ (Analytical)

FEM, Finite Difference, Boundary Element
exact closed -form can be expressed in finite $\quad\left(u(x)=2-x^{2}+\sin x\right)$ number of terms
Solution infinite series

$$
\left(u(x)=\sum_{l=1}^{\infty} a_{i} \sin (i \pi x)\right)
$$

$u(x)=\sum_{i=1}^{N} a_{i} \sin (i \pi x)$
exact-Analytical Solution (approximate)
7.2. Analysis of Laminated Beam Using CLPT 7.2-1 Governing Equation
consider only the bending of the beam $(\{N\}=a)$. Therefor Constitutive Eq . is:

$$
\left\{\begin{array}{l}
m_{x} \\
m_{y} \\
m_{x y}
\end{array}\right\}=-[D]\left\{\begin{array}{l}
\frac{\partial^{2} w_{0}}{\partial x^{2}} \\
\frac{\partial^{2} w_{0}}{\partial y^{2}} \\
\frac{2 \partial^{2} w_{0}}{\partial x \partial y}
\end{array}\right\} \quad(7.2-1)
$$

Of course for bending of a beam we have:

$$
\begin{gathered}
M_{y}=M_{x y}=0 \quad \text { 7.2.2) } \\
\Rightarrow\left\{\begin{array}{l}
\frac{\partial^{2} w_{0}}{\partial x^{2}} \\
\frac{\partial^{2} w_{0}}{2^{y^{2}}} \\
\frac{2}{2} \frac{w_{0}}{\partial x \partial y}
\end{array}\right\}=-\left[\begin{array}{lll}
D_{11}^{*} & D_{12}^{*} & D_{16}^{*} \\
D_{21}^{*} & D_{22}^{*} & D_{26}^{*} \\
0_{16}^{*} & D_{26}^{*} & D_{66}^{*}
\end{array}\right]\left\{\left.\begin{array}{c}
M_{n} \\
M_{y} \\
M_{n y}
\end{array} \right\rvert\,\right. \text { (7.2-3) }
\end{gathered}
$$

If the beam is long enough we can neglect the effect of Poisson's ration and shearing deformation. Thus

$$
\begin{array}{r}
w_{0}=w_{0}(x, t) \\
\frac{\partial^{2} w_{0}}{\partial x^{2}}=-0_{11}^{*} m_{x x}
\end{array}
$$

$$
(7.2-3)
$$

$$
(7.2-4)
$$

Constitutive Eq. of CLPT Beam.

