Composites
Lesson 18

6.1-4. Laminate Constitutive Equations

$$
\begin{aligned}
& (6.1-10) \quad\left\{\begin{array}{l}
N_{x} \\
N_{y} \\
N_{x y}
\end{array}\right\}=[A]\left\{\begin{array}{l}
\varepsilon_{x}^{0} \\
\varepsilon_{j}^{0} \\
\gamma_{x y}^{0}
\end{array}\right\}+[B]\left\{\begin{array}{l}
\varepsilon_{x}^{(1)} \\
\varepsilon_{y}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\} \quad(6,1-28) \\
& \left\{\begin{array}{l}
m_{x} \\
m_{y} \\
m_{x y}
\end{array}\right\}=[B]\left\{\begin{array}{l}
\varepsilon_{x}^{0} \\
\varepsilon_{j}^{0} \\
\gamma_{x y}^{0}
\end{array}\right\}+[D]\left\{\begin{array}{l}
\varepsilon_{x}^{(1)} \\
\varepsilon_{j}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array}\right\} \quad(6.1-29) \\
& \left\{\begin{array}{c}
\bar{N} \\
\bar{M}
\end{array}\right\}=\left[\begin{array}{c:c}
A & B \\
\hdashline B & D^{-}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon^{0} \\
\hdashline \varepsilon^{(1)}
\end{array}\right\}\{(6.1-30)
\end{aligned}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
\bar{N} \\
\bar{n}
\end{array}\right\}=\left\{\begin{array}{l}
N \\
M
\end{array}\right\}+\left\{\begin{array}{c}
N^{\top} \\
n^{\top}
\end{array}\right\}+\left\{\begin{array}{c}
N^{p} \\
n^{p}
\end{array}\right\} \quad \text { (6.1-31) } \tag{6.1-31}\\
& \left\{N^{\top}\right\}=\sum_{K=1}^{N} \int_{Z_{K}}^{Z_{K-1}}[\bar{Q}]_{K}\{\bar{\alpha}\}_{K} \Delta T d z \quad \text { (6.1-32) } \\
& \left\{N^{\top}\right\}=\sum_{K=1}^{N} \int_{Z_{K-1}}^{z_{k-1}}[\bar{Q}]_{K}\{\bar{\alpha}\}_{K} \Delta T z d z \\
& \left\{N^{P}\right\}=\sum_{K=1}^{N} \int_{K-1}^{z_{K-1}}[\bar{e}]_{K}\{\epsilon\}_{K} d z \\
& \left\{n^{P}\right\}=\sum_{K=1}^{N} \int_{z_{K}}^{z_{k-1}^{k}}[\bar{e}]_{K}\{\epsilon\}_{K} d z
\end{align*}
$$

$\left\{N^{\Gamma}\right\}$ and $\left\{n^{z_{K}} p\right.$ are the piezoelectric resultants.
6.1-5. Equations of motions in Terms of Displacements

$$
\begin{aligned}
& \text { we had: }\left\{\begin{array}{l}
\frac{\partial u_{0}}{\partial x}+1 / 2\left(\frac{\partial w_{0}}{\partial x}\right)^{2} \\
\frac{\partial v_{0}}{\partial y}+1 / 2\left(\frac{\partial w_{0}}{\partial y}\right)^{2} \\
\frac{\partial u_{0}}{\partial y}+\frac{\partial v_{0}}{\partial x}+\frac{\partial w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y}
\end{array}\right\}-[B]\left\{\begin{array}{c}
\frac{\partial^{2} w_{0}}{\partial x^{2}} \\
\frac{\partial^{2} w_{0}}{\partial y^{2}} \\
2 \frac{\partial^{2} w_{0}}{\partial x \partial y}
\end{array}\right\}(6.1-34) \\
& \qquad\{M\}=[B]\left\{\begin{array}{c}
v
\end{array}\right\}-[D]\left\{\pi \left\{\begin{array}{c}
16.1-35)
\end{array}\right.\right.
\end{aligned}
$$

substituting these equations in the governing equations (6.1-21) we have:

$$
\begin{aligned}
& A_{11}\left(\frac{\partial^{2} u_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+A_{12}\left(\frac{\partial^{2} v_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right) \\
& +A_{16}\left(\frac{\partial^{2} u_{0}}{\partial x \partial y}+\frac{\partial^{2} v_{0}}{\partial x^{2}}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right) \\
& -B_{11} \frac{\partial^{3} w_{0}}{\partial x^{3}}-B_{12} \frac{\partial^{3} w_{0}}{\partial x \partial y^{2}}-2 B_{16} \frac{\partial^{3} w_{0}}{\partial x^{2} \partial y} \\
& +A_{16}\left(\frac{\partial^{2} u_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right)+A_{26}\left(\frac{\partial^{2} v_{0}}{\partial y^{2}}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right) \\
& +A_{66}\left(\frac{\partial^{2} u_{0}}{\partial y^{2}}+\frac{\partial^{2} v_{0}}{\partial x \partial y}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right) \\
& -B_{16} \frac{\partial^{3} w_{0}}{\partial x^{2} \partial y}-B_{26} \frac{\partial^{3} w_{0}}{\partial y^{3}}-2 B_{66} \frac{\partial^{3} w_{0}}{\partial x \partial y^{2}} \\
& -\left(\frac{\partial N_{x x}^{T}}{\partial x}+\frac{\partial N_{x y}^{T}}{\partial y}\right)=I_{0} \frac{\partial^{2} u_{0}}{\partial t^{2}}-I_{1} \frac{\partial^{3} w_{0}}{\partial x \partial t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& A_{16}\left(\frac{\partial^{2} u_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+A_{26}\left(\frac{\partial^{2} v_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right) \\
& +A_{66}\left(\frac{\partial^{2} u_{0}}{\partial x \partial y}+\frac{\partial^{2} v_{0}}{\partial x^{2}}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right) \\
& -B_{16} \frac{\partial^{3} w_{0}}{\partial x^{3}}-B_{26} \frac{\partial^{3} w_{0}}{\partial x \partial y^{2}}-2 B_{66} \frac{\partial^{3} w_{0}}{\partial x^{2} \partial y} \\
& +A_{12}\left(\frac{\partial^{2} u_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right)+A_{22}\left(\frac{\partial^{2} v_{0}}{\partial y^{2}}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right) \\
& +A_{26}\left(\frac{\partial^{2} u_{0}}{\partial y^{2}}+\frac{\partial^{2} v_{0}}{\partial x \partial y}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right) \\
& -B_{12} \frac{\partial^{3} w_{0}}{\partial x^{2} \partial y}-B_{22} \frac{\partial^{3} w_{0}}{\partial y^{3}}-2 B_{26} \frac{\partial^{3} w_{0}}{\partial x \partial y^{2}} \\
& -\left(\frac{\partial N_{x y}^{T}}{\partial x}+\frac{\partial N_{y y}^{T}}{\partial y}\right)=I_{0} \frac{\partial^{2} v_{0}}{\partial t^{2}}-I_{1} \frac{\partial^{3} w_{0}}{\partial y \partial t^{2}}
\end{aligned}
$$

$$
\left.\begin{array}{l}
B_{11}\left(\frac{\partial^{3} u_{0}}{\partial x^{3}}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial^{2} w_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{3} w_{0}}{\partial x^{3}}\right)+B_{12}\left(\frac{\partial^{3} v_{0}}{\partial x^{2} \partial y}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right. \\
\left.+\frac{\partial w_{0}}{\partial y} \frac{\partial^{3} w_{0}}{\partial x^{2} \partial y}\right)+B_{16}\left(\frac{\partial^{3} u_{0}}{\partial x^{2} \partial y}+\frac{\partial^{3} v_{0}}{\partial x^{3}}+\frac{\partial^{3} w_{0}}{\partial x^{3}} \frac{\partial w_{0}}{\partial y}+2 \frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right. \\
\left.+\frac{\partial w_{0}}{\partial x} \frac{\partial^{3} w_{0}}{\partial x^{2} \partial y}\right)-D_{11} \frac{\partial^{4} w_{0}}{\partial x^{4}}-D_{12} \frac{\partial^{4} w_{0}}{\partial x^{2} \partial y^{2}}-2 D_{16} \frac{\partial^{4} w_{0}}{\partial x^{3} \partial y} \\
+2 B_{16}\left(\frac{\partial^{3} u_{0}}{\partial x^{2} \partial y}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial^{2} w_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{3} w_{0}}{\partial x^{2} \partial y}\right)+2 B_{26}\left(\frac{\partial^{3} v_{0}}{\partial x \partial y^{2}}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial^{2} w_{0}}{\partial y^{2}}\right. \\
\left.+\frac{\partial w_{0}}{\partial y} \frac{\partial^{3} w_{0}}{\partial x \partial y^{2}}\right)+2 B_{66}\left(\frac{\partial^{3} u_{0}}{\partial x \partial y^{2}}+\frac{\partial^{3} v_{0}}{\partial x^{2} \partial y}+\frac{\partial^{3} w_{0}}{\partial x^{2} \partial y} \frac{\partial w_{0}}{\partial y}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial^{2} w_{0}}{\partial x \partial y}\right. \\
\left.+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial^{2} w_{0}}{\partial y^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{3} w_{0}}{\partial x \partial y^{2}}\right)-2 D_{16} \frac{\partial^{4} w_{0}}{\partial x^{3} \partial y}-2 D_{26} \frac{\partial^{4} w_{0}}{\partial x \partial y^{3}} \\
-4 D_{66} \frac{\partial^{4} w_{0}}{\partial x^{2} \partial y^{2}}+B_{12}\left(\frac{\partial^{3} u_{0}}{\partial x \partial y^{2}}+\frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial^{2} w_{0}}{\partial x \partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{3} w_{0}}{\partial x \partial y^{2}}\right) \\
+B_{22}\left(\frac{\partial^{3} v_{0}}{\partial y^{3}}+\frac{\partial^{2} w_{0}}{\partial y^{2}} \frac{\partial^{2} w_{0}}{\partial y^{2}}+\frac{\partial w_{0}}{\partial y} \frac{\partial^{3} w_{0}}{\partial y^{3}}\right)+B_{26}\left(\frac{\partial^{3} u_{0}}{\partial y^{3}}+\frac{\partial^{3} v_{0}}{\partial x \partial y^{2}}\right. \\
\left.+\frac{\partial^{3} w_{0}}{\partial x \partial y^{2}} \frac{\partial w_{0}}{\partial y}+2 \frac{\partial^{2} w_{0}}{\partial x \partial y} \frac{\partial^{2} w_{0}}{\partial y^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{3} w_{0}}{\partial y^{3}}\right) \\
-D_{12} \frac{\partial^{4} w_{0}}{\partial x^{2} \partial y^{2}}-D_{22} \frac{\partial^{4} w_{0}}{\partial y^{4}}-2 D_{26} \frac{\partial^{4} w_{0}}{\partial x \partial y^{3}}+\mathcal{N}\left(w_{0}\right)+q \\
-\left(\frac{\partial^{2} M_{x x}^{T}}{\partial x^{2}}+2 \frac{\partial^{2} M_{x y}^{T}}{\partial y \partial x}+\frac{\partial^{2} M_{y y}^{T}}{\partial y^{2}}\right) \\
=I_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}}-I_{2} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial^{2} w_{0}}{\partial x^{2}}+\frac{\partial^{2} w_{0}}{\partial y^{2}}\right)+I_{1} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u_{0}}{\partial x}+\frac{\partial v_{0}}{\partial y}\right) \\
\hline
\end{array}\right]-\square \square
$$

Example: (cylindrical Bending)
In a plate when we have infinitedemension along the y-axis and finite dimension along the x-axis and subjected to a transverse load $q(n)$

$$
\begin{gathered}
A_{11}\left(\frac{\partial^{2} u_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+A_{16} \frac{\partial^{2} v_{0}}{\partial x^{2}}-B_{11} \frac{\partial^{3} w_{0}}{\partial x^{3}}-\frac{\partial N_{x x}^{T}}{\partial x}=I_{0} \frac{\partial^{2} u_{0}}{\partial t^{2}}-I_{1} \frac{\partial^{3} w_{0}}{\partial x \partial t^{2}} \quad\left(\frac{\partial}{\partial y}=0\right) \\
A_{16}\left(\frac{\partial^{2} u_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+A_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}}-B_{16} \frac{\partial^{3} w_{0}}{\partial x^{3}}-\frac{\partial N_{x y}^{T}}{\partial x}=I_{0} \frac{\partial^{2} v_{0}}{\partial t^{2}} \\
B_{11}\left(\frac{\partial^{3} u_{0}}{\partial x^{3}}+\frac{\partial^{2} w_{0}}{\partial x^{2}} \frac{\partial^{2} w_{0}}{\partial x^{2}}+\frac{\partial w_{0}}{\partial x} \frac{\partial w^{3} w_{0}}{\partial x^{3}}\right)+B_{16} \frac{\partial^{3} v_{0}}{\partial x^{3}}-D_{11} \frac{\partial^{4} w_{0}}{\partial x^{4}}-\frac{\partial^{2} M_{x x}^{T}}{\partial x^{2}} \\
+\frac{\partial}{\partial x}\left(N_{x x} \frac{\partial w_{0}}{\partial x}\right)+q=I_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}}-I_{2} \frac{\partial^{4} w_{0}}{\partial x^{2} \partial t^{2}}+I_{1} \frac{\partial^{3} u_{0}}{\partial x t^{2}} \\
\text { (G.1-37) }
\end{gathered}
$$

6.2. The First-Order Laminated Plate Theory (FSDT) first-arder Shear deformation laminated plate theory.
6.2-1-Displacements and Strains

$$
\begin{align*}
& u(x, y, z, t)=u_{0}(x, y, t)+z \phi_{x}(x, y, t) \\
& v(x, y, z, t)=v_{0}(x, y, t)+z \phi_{y}(x, y, t) \tag{6.2-1}\\
& w(x, y, z, t)=w_{0}(x, y, t)
\end{align*}
$$

where $\left(u_{0}, \nu_{0}, w_{0}, \phi_{n}, \phi_{J}\right)$ are unknown functions to be determined. As before, $\left(u_{0}, v_{0}, w_{0}\right)$ denote the displacements of a point on the plane $z=0$. Note that

$$
\phi_{\eta}=\frac{\partial u}{\partial z}, \phi_{y}=\frac{\partial v}{\partial t} \quad(6.2 .2)
$$

which indicate that ϕ_{x} and ϕ_{y} are the rotations of a transver $\begin{gathered}\text { se }\end{gathered}$
 normal about the Y-and x-axes.

if $\frac{a}{h} \geqslant 50$ then

$$
\phi_{x}=-\frac{\partial w_{0}}{\partial x}, \phi_{y}=-\frac{\partial w_{0}}{\partial y}
$$

nonlinear Strains:

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\partial u_{0}}{\partial x}+1 / 2\left(\frac{\partial W_{0}}{\partial x}\right)^{2}+z \frac{\partial \phi_{x}}{\partial x} \quad \text { linear through the thickness } \\
& \varepsilon_{y}=\frac{\partial \nu_{0}}{\partial y}+1 / 2\left(\frac{\partial w_{0}}{\partial y}\right)^{2}+z \frac{\partial \Phi_{y}}{\partial y_{y}} \\
& \gamma_{x y}=\left(\frac{\partial u_{0}}{\partial y}+\frac{\partial v_{0}}{\partial x}+\frac{\partial w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y}\right)+z\left(\frac{\partial \phi_{x}}{\partial y}+\frac{\partial \phi_{y}}{\partial x}\right) \\
& \gamma_{x_{z}}=\frac{\partial w_{0}}{\partial x}+\phi_{x} \\
& \gamma_{y z}=\frac{\partial w_{0}}{\partial y}+\phi y \\
& \text { (6.2.4) } \\
& \text { Constant through the thickness } \\
& \varepsilon_{z=0} \\
& \text { capprodimation) } \\
& \left.\left\lvert\, \begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{y z} \\
\gamma_{x z} \\
\gamma_{x y}
\end{array}\right.\right\}=\left\{\begin{array}{l}
\varepsilon_{x}^{0} \\
\varepsilon_{y}^{0} \\
\gamma_{y z}^{0} \\
\gamma_{x z} \\
\gamma_{x y}
\end{array}|+z| \begin{array}{l}
\varepsilon_{x}^{(1)} \\
\varepsilon_{y}^{(1)} \\
\gamma_{y z}^{(1)} \\
\gamma_{x z}^{(1)} \\
\gamma_{x y}^{(1)}
\end{array} \left\lvert\,=\left\{\left.\begin{array}{l}
\frac{\partial u_{0}}{\partial x}+\frac{1}{2}\left(\frac{\partial w_{0}}{\partial x}\right)^{2} \\
\frac{\partial v_{0}}{\partial y}+1_{2}\left(\frac{\partial w_{0}}{\partial y}\right)^{2} \\
\frac{\partial w_{0}}{\partial x}+\phi_{x} \\
\frac{\partial w_{0}}{\partial y}+\phi_{y} \\
\frac{\partial u_{0}}{\partial x}+\frac{\partial \nu_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y}
\end{array}|+z| \begin{array}{c}
\frac{\partial \phi_{x}}{\partial x} \\
\frac{\partial \phi_{y}}{\partial y} \\
0 \\
0 \\
\frac{\partial \phi_{x}}{\partial y}+\frac{\partial \phi_{y}}{\partial x}
\end{array} \right\rvert\,\right.\right.\right.
\end{aligned}
$$

6.2.2 Equations of Motion

$$
\begin{gathered}
0=\int_{0}^{T}(\delta U+\delta V-\delta K) d t \quad(6.2-6) \\
\delta U=\int_{v_{0}}\left\{\int _ { - h / 2 } ^ { - h / 2 } \left[\sigma_{x}\left(\delta \varepsilon_{x}^{0}+z \delta \varepsilon_{x}^{(1)}\right)+\sigma_{y}\left(\delta \varepsilon_{y}^{0}+z \delta \varepsilon_{y}^{(1)}\right)+\sigma_{x y}\left(\delta \delta_{x y}^{0}+z \delta \gamma_{x y}^{0}\right)\right.\right. \\
\left.\delta V=-\int_{\Omega_{0}}^{(1)}\left[\left(\sigma_{y z}, \sigma_{t}\right) \delta \delta_{y z}^{0}\right] d z\right\} d x d y
\end{gathered}
$$

Substituting $(6.2-7)$ in to $(6.2-6)$ and integrating through the thickness we obtain:

$$
\begin{align*}
0=\int_{0}^{T}\left\{\int_{\Omega_{0}}\right. & {\left[N_{x x} \delta \varepsilon_{x x}^{(0)}+M_{x x} \delta \varepsilon_{x x}^{(1)}+N_{y y} \delta \varepsilon_{y y}^{(0)}+M_{y y} \delta \varepsilon_{y y}^{(1)}+N_{x y} \delta \gamma_{x y}^{(0)}+M_{x y} \delta \gamma_{x y}^{(1)}\right.} \\
& +Q_{x} \delta \gamma_{x z}^{(0)}+Q_{y} \delta \gamma_{y z}^{(0)}-q \delta w_{0}-I_{0}\left(\dot{u}_{0} \delta \dot{u}_{0}+\dot{v}_{0} \delta \dot{v}_{0}+\dot{w}_{0} \delta \dot{w}_{0}\right) \tag{6.2-8}\\
& \left.-I_{1}\left(\dot{\phi}_{x} \delta \dot{u}_{0}+\dot{\phi}_{y} \delta \dot{v}_{0}+\delta \dot{\phi}_{x} \dot{u}_{0}+\delta \delta \dot{\phi}_{y} \dot{v}_{0}\right)-I_{2}\left(\dot{\phi}_{x} \delta \dot{\phi}_{x}+\dot{\phi}_{y} \delta \dot{\phi}_{y}\right)\right] d x d y \\
& \left.-\int_{\Gamma_{\sigma}}\left(\hat{N}_{n n} \delta u_{n}+\hat{N}_{n s} \delta u_{s}+\hat{M}_{n n} \delta \phi_{n}+\hat{M}_{n s} \delta \phi_{s}+\hat{Q}_{n} \delta w_{0}\right) d s\right\} d t
\end{align*}
$$

Shear Correction Factor
we had $\left\{\begin{array}{l}Q_{x} \\ Q_{y}\end{array}\right\}=\int_{-h / 2}^{h / 2}\left\{\begin{array}{l}\sigma_{x z} \\ \sigma_{y z}\end{array}\right\} d z \quad(6.2-9)$
In F-SDT we assumed that shear Stress is Constant through the thickness

$$
\sigma_{u z}=\frac{Q_{u}}{A_{\longrightarrow}(6-2-10)}
$$

But is well known from elementary theory of homogeneous bea that the transverse shear stress varies parabolically through the beam thickness.

This assumption make a mistake in calculating strain energy. It is often corrected by multiplying with a parameter K, called shear correction coefficient.

$$
\left\{\begin{array}{l}
Q_{x} \\
Q_{y}
\end{array}\right\}=K \int_{-h / 2}^{h / 2}\left\{\begin{array}{c}
\sigma_{x z} \\
\sigma_{y z}
\end{array}\right\} d z \quad(6.2-11)
$$

$K=U^{c} \sim$ strain energy based on actual shear stress

For example for rectangular cross section the actual shear stress distribution through the thickness is given by

$$
\begin{align*}
& \sigma_{x z}^{C}=\frac{3 Q}{2 b h}\left[1-\left(\frac{2 z}{h}\right)^{2}\right] \quad(6.2-13 \tag{6.2-13}\\
& U^{C}=\frac{1}{2 G_{13}} \int_{A}\left(\sigma_{x z}^{C}\right)^{2} d A=\frac{3 Q^{2}}{5 G_{13} b h} \quad(6.2-14) \\
& U^{F}=\frac{1}{2 G_{13}} \int_{A}\left(\sigma_{x z}^{F}\right)^{2} d A=\frac{Q^{2}}{3 G_{13} b h} \\
& \Rightarrow K=\frac{U^{C}}{U^{F}}=\frac{5}{6} \quad \text { (Rectangular) }
\end{align*}
$$

