Composites
Lesson 17
.
By substituting $(6.1-12,13,14)$ into $(6.1-11)$ and integrating in Z direction we have:

$$
\left.\begin{array}{rl}
\begin{array}{rl}
0=\int_{0}^{T}\left\{\int_{\Omega_{0}}\right. & N_{x x} \delta \varepsilon_{x x}^{(0)}+M_{x x} \delta \varepsilon_{x x}^{(1)}+N_{y y} \delta \varepsilon_{y y}^{(0)}+M_{y y} \delta \varepsilon_{y y}^{(1)}+N_{x y} \delta \gamma_{x y}^{(0)} \\
& +M_{x y} \delta \gamma_{x y}^{(1)}-q \delta w_{0}-I_{0}\left(\dot{u}_{0} \delta \dot{u}_{0}+\dot{v}_{0} \delta \dot{v}_{0}+\dot{w}_{0} \delta \dot{w}_{0}\right) \\
& +I_{1}\left(\frac{\partial \delta \dot{w}_{0}}{\partial x} \dot{u}_{0}+\frac{\partial \dot{w}_{0}}{\partial x} \delta \dot{u}_{0}+\frac{\partial \delta \dot{w}_{0}}{\partial y} \dot{v}_{0}+\frac{\partial \dot{w}_{0}}{\partial y} \delta \dot{v}_{0}\right)
\end{array} \\
& \left.-I_{2}\left(\frac{\partial \dot{w}_{0}}{\partial x} \frac{\partial \delta \dot{w}_{0}}{\partial x}+\frac{\partial \dot{w}_{0}}{\partial y} \frac{\partial \delta \dot{w}_{0}}{\partial y}\right)\right] d x d y
\end{array} \quad \begin{array}{l}
-\underbrace{\left.\int_{\Gamma_{0}}\left(\hat{N}_{n n} \delta u_{0 n}+\hat{N}_{n s} \delta u_{0 s}-\hat{M}_{n n} \frac{\partial \delta w_{0}}{\partial n}-\hat{M}_{n s} \frac{\partial \delta w_{0}}{\partial s}+\hat{Q}_{n} \delta w_{0}\right) d s\right\} d t}_{\Gamma_{\sigma}} \text { boundary expressions }
\end{array}\right\}
$$

$$
(6.1-15)
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
N_{x x} \\
N_{y y} \\
N_{x y}
\end{array}\right\}=\int_{-\frac{h}{2}}^{\frac{h}{2}}\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right\} d z, \quad\left\{\begin{array}{l}
M_{x x} \\
M_{y y} \\
M_{x y}
\end{array}\right\}=\int_{-\frac{h}{2}}^{\frac{h}{2}}\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right\} z d z \\
& \left\{\begin{array}{l}
\hat{N}_{n n} \\
\hat{N}_{n s}
\end{array}\right\}=\int_{-\frac{h}{2}}^{\frac{h}{2}}\left\{\begin{array}{l}
\hat{\sigma}_{n n} \\
\hat{\sigma}_{n s}
\end{array}\right\} d z, \quad\left\{\begin{array}{l}
\hat{M}_{n n} \\
\hat{M}_{n s}
\end{array}\right\}=\int_{-\frac{h}{2}}^{\frac{h}{2}}\left\{\begin{array}{l}
\hat{\sigma}_{n n} \\
\hat{\sigma}_{n s}
\end{array}\right\} z d z \\
& \left\{\begin{array}{l}
I_{0} \\
I_{1} \\
I_{2}
\end{array}\right\}=\int_{-\frac{h}{2}}^{\frac{h}{2}}\left\{\begin{array}{c}
1 \\
z \\
z^{2}
\end{array}\right\} \rho_{0} d z, \quad \hat{Q}_{n}=\int_{-\frac{h}{2}}^{\frac{h}{2}} \hat{\sigma}_{n z} d z
\end{aligned}
$$

from (G.I-6) we can write:

$$
\begin{aligned}
& \delta \varepsilon_{x}^{0}=\frac{\partial \delta u_{0}}{\partial x}+\frac{\partial w_{0}}{\partial x} \frac{\partial \delta w_{0}}{\partial x}, \delta \varepsilon_{x}^{(1)}=-\frac{\partial^{2} \delta w_{0}}{\partial x^{2}} \\
& \delta \varepsilon_{y}^{0}=\frac{\partial \delta v_{0}}{\partial y}+\frac{\partial w_{0}}{\partial y} \frac{\partial \delta w_{0}}{\partial y}, \delta \varepsilon_{y}^{(1)}=-\frac{\partial^{2} \delta w_{0}}{\partial y^{2}} \\
& \delta \gamma_{x y}^{0}=\frac{\partial \delta u_{0}}{\partial y}+\frac{\partial \delta v_{0}}{\partial x}+\frac{\partial \delta w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y}+\frac{\partial w_{0}}{\partial x} \frac{\partial \delta w_{0}}{\partial y}, \delta \gamma_{x y}^{(1)}=-2 \frac{\partial^{2} \delta w_{0}}{\partial x \partial y}
\end{aligned}
$$

Bu substituting these, into $(6.1-15)$ we have:

$$
\begin{align*}
0=\int_{0}^{T}\left\{\int_{\Omega_{0}}[\right. & -N_{x x, x} \delta u_{0}-\left(N_{x x} \frac{\partial w_{0}}{\partial x}\right)_{, x} \delta w_{0}-M_{x x, x x} \delta w_{0}-N_{y y, y} \delta v_{0} \\
& -\left(N_{y y} \frac{\partial w_{0}}{\partial y}\right)_{, y} \delta w_{0}-M_{y y, y y} \delta w_{0}-N_{x y, y} \delta u_{0}-N_{x y, x} \delta v_{0} \\
& -\left(N_{x y} \frac{\partial w_{0}}{\partial y}\right)_{, x} \delta w_{0}-\left(N_{x y} \frac{\partial w_{0}}{\partial x}\right)_{, y} \delta w_{0}-2 M_{x y, x y} \delta w_{0}-q \delta w_{0} \\
& +I_{0}\left(\ddot{u}_{0} \delta u_{0}+\ddot{v}_{0} \delta v_{0}+\ddot{w}_{0} \delta w_{0}\right)-I_{2}\left(\frac{\partial^{2} \ddot{w}_{0}}{\partial x^{2}}+\frac{\partial^{2} \ddot{w}_{0}}{\partial y^{2}}\right) \delta w_{0} \\
& \left.+I_{1}\left(\frac{\partial \ddot{u}_{0}}{\partial x} \delta w_{0}-\frac{\partial \ddot{w}_{0}}{\partial x} \delta u_{0}+\frac{\partial \ddot{v}_{0}}{\partial y} \delta w_{0}-\frac{\partial \ddot{w}_{0}}{\partial y} \delta v_{0}\right)\right] d x d y \\
+\oint_{\Gamma} & {\left[N_{x x} n_{x} \delta u_{0}+\left(N_{x x} \frac{\partial w_{0}}{\partial x}\right) n_{x} \delta w_{0}-M_{x x} n_{x} \frac{\partial \delta w_{0}}{\partial x}+M_{x x, x} n_{x} \delta w_{0}\right.} \\
& +N_{y y} n_{y} \delta v_{0}+\left(N_{y y} \frac{\partial w_{0}}{\partial y}\right) n_{y} \delta w_{0}-M_{y y} n_{y} \frac{\partial \delta w_{0}}{\partial y}+M_{y y, y} n_{y} \delta w_{0} \\
& -M_{x y} n_{x} \frac{\partial \delta w_{0}}{\partial y}+M_{x y, x} n_{y} \delta w_{0}-M_{x y} n_{y} \frac{\partial \delta w_{0}}{\partial x}+M_{x y, y} n_{x} \delta w_{0} \\
& \left.+N_{x y} n_{y} \delta u_{0}+N_{x y} n_{x} \delta v_{0}+N_{x y} \frac{\partial w_{0}}{\partial y} n_{x} \delta w_{0}+N_{x y} \frac{\partial w_{0}}{\partial x} n_{y} \delta w_{0}\right] d s \\
-\int_{\Gamma_{\sigma}} & \left(\hat{N}_{n n} \delta u_{0 n}+\hat{N}_{n s} \delta u_{0 s}-\hat{M}_{n n} \frac{\partial \delta w_{0}}{\partial n}-\hat{M}_{n s} \frac{\partial \delta w_{0}}{\partial s}+\hat{Q}_{n} \delta w_{0}\right) d s \\
+\oint_{\Gamma} & {\left.\left[-I_{1}\left(\ddot{u}_{0} n_{x}+\ddot{v}_{0} n_{y}\right)+I_{2}\left(\frac{\partial \ddot{w}_{0}}{\partial x} n_{x}+\frac{\partial \ddot{w}_{0}}{\partial y} n_{y}\right)\right] \delta w_{0} d s\right\} d t \quad(3.3 .2} \tag{3.3.22}
\end{align*}
$$

And we can rewrite it as:

For linear analysis, we set N and ρ are zero.
where

$$
\begin{aligned}
\mathcal{N}\left(w_{0}\right) & =\frac{\partial}{\partial x}\left(N_{x x} \frac{\partial w_{0}}{\partial x}+N_{x y} \frac{\partial w_{0}}{\partial y}\right)+\frac{\partial}{\partial y}\left(N_{x y} \frac{\partial w_{0}}{\partial x}+N_{y y} \frac{\partial w_{0}}{\partial y}\right) \\
\mathcal{P}\left(w_{0}\right) & =\left(N_{x x} \frac{\partial w_{0}}{\partial x}+N_{x y} \frac{\partial w_{0}}{\partial y}\right) n_{x}+\left(N_{x y} \frac{\partial w_{0}}{\partial x}+N_{y y} \frac{\partial w_{0}}{\partial y}\right) n_{y}
\end{aligned}
$$

$$
(6.1-20)
$$

$$
\begin{align*}
& 0=\int_{0}^{T}\left\{\int _ { \Omega _ { 0 } } \left[-\left(N_{x x, x}+N_{x y, y}-I_{0} \ddot{u}_{0}+I_{1} \frac{\partial \ddot{w}_{0}}{\partial x}\right) \delta u_{0}\right.\right. \\
& -\left(N_{x y, x}+N_{y y, y}-I_{0} \ddot{v}_{0}+I_{1} \frac{\partial \ddot{w}_{0}}{\partial y}\right) \delta v_{0} \\
& -\left(M_{x x, x x}+2 M_{x y, x y}+M_{y y, y y}+\mathcal{N}\left(w_{0}\right)+q\right. \tag{6.1-19}\\
& \left.\left.-I_{0} \ddot{w}_{0}-I_{1} \frac{\partial \ddot{u}_{0}}{\partial x}-I_{1} \frac{\partial \ddot{v}_{0}}{\partial y}+I_{2} \frac{\partial^{2} \ddot{w}_{0}}{\partial x^{2}}+I_{2} \frac{\partial^{2} \ddot{w}_{0}}{\partial y^{2}}\right) \delta w_{0}\right] d x d y \\
& \vec{N} \cdot \vec{n}=\hat{N}_{n}^{x} \\
& +\int_{\Gamma_{\sigma}}\left[\frac{N_{\cdot} \cdot \overrightarrow{\boldsymbol{n}}=\mathbf{N}_{\boldsymbol{n}}}{\left(N_{x x} n_{x}+N_{x y} n_{y}\right)} \delta u_{0}+\left(\frac{\mathbf{N}_{\boldsymbol{n}} \boldsymbol{s}}{N_{x y} n_{x}+N_{y y} n_{y}}\right) \delta v_{0}\right. \\
& +\left(M_{x x, x} n_{x}+M_{x y, y} n_{x}+M_{y y, y} n_{y}+M_{x y, x} n_{y}+\mathcal{P}\left(w_{0}\right)\right. \\
& \left.-I_{1} \ddot{u}_{0} n_{x}-I_{1} \ddot{v}_{0} n_{y}+I_{2} \frac{\partial \ddot{w}_{0}}{\partial x} n_{x}+I_{2} \frac{\partial \ddot{w}_{0}}{\partial y} n_{y}\right) \delta w_{0} \\
& \left.-\left(M_{x x} n_{x}+M_{x y} n_{y}\right) \frac{\partial \delta w_{0}}{\partial x}-\left(M_{x y} n_{x}+M_{y y} n_{y}\right) \frac{\partial \delta w_{0}}{\partial y}\right] d s \\
& \left.-\int_{\Gamma_{\sigma}}\left(\hat{N}_{n n} \delta u_{0 n}+\hat{N}_{n s} \delta u_{0 s}-\hat{M}_{n n} \frac{\partial \delta w_{0}}{\partial n}-\hat{M}_{n s} \frac{\partial \delta w_{0}}{\partial s}+\hat{Q}_{n} \delta w_{0}\right) d s\right\} d t
\end{align*}
$$

The Euler-Lagrange equations are obtained by setting the coefficients of $\delta u_{0}, \delta \nu_{0}, \delta w_{0}$ in Ω_{0} to Zero seperately:

$$
\begin{array}{l|l|l}
\delta u_{0}: & \begin{array}{l}
\frac{\partial N_{x}}{\partial x}+\frac{\partial N_{x y}}{\partial y}=I_{0} \frac{\partial^{2} u_{0}}{\partial t^{2}}-I_{1} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial w_{0}}{\partial x}\right) \\
\delta v_{0}:
\end{array} & \begin{array}{l}
\frac{\partial N_{x y}}{\partial x}+\frac{\partial N_{y}}{\partial y}=I_{0} \frac{\partial^{2} v_{0}}{\partial t^{2}}-I_{1} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial w_{0}}{\partial y}\right) \\
\delta w_{0}:
\end{array} \\
\begin{array}{ll}
\frac{\partial^{2} M_{x}}{\partial x^{2}}+\frac{\partial^{2} M_{x y}}{\partial x \partial y}+\frac{\partial^{2} M_{y}}{\partial y^{2}}+N\left(w_{0}\right)+q= & I_{0} \frac{\partial^{2} w_{0}}{\partial t^{2}}-I_{2} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial^{2} w_{0}}{\partial x^{2}}+\frac{\partial^{2} w_{0}}{\partial y_{0}}\right. \\
& +I_{1} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u_{0}}{\partial x}+\frac{\partial v_{0}}{\partial y}\right)
\end{array}
\end{array}
$$

Equations of Motion for CLPT Plate
In boundary expressions (6.1-19) the parameters in virtual variation form give us primary variables and coefficients of those variations indicate secondary variables.

$$
u_{n}, u_{s}, w_{0}, \frac{\partial w_{0}}{\partial n}, \frac{\partial w_{0}}{\partial s} \quad \text { primary }
$$ (essential b.c.)

natural b.c.:

$$
\begin{array}{ll}
N_{n}-\hat{N}_{n}=0, & N_{n s}-\hat{N}_{n s}=0, Q_{n}-\hat{Q}_{n}=0 \tag{6.1-23}\\
M_{n}-\hat{M}_{n}=0, & M_{n s}-\hat{M}_{n s}=0
\end{array}
$$

which by considering the coeffision of δw_{0} we cansay:

$$
\begin{aligned}
Q_{n}= & \left(m_{x, x}+m_{x y, y}-I_{1} \ddot{u}_{0}+I_{2} \frac{\partial w_{0}^{0}}{\partial x}\right) n_{x}+(6.1-24) \\
& \left(m_{y, y}+m_{x y, x}-I_{1} \ddot{v}_{0}+I_{2} \frac{\partial \dot{w}_{0}}{\partial y}\right) n_{y}+P\left(w_{0}\right)
\end{aligned}
$$

we note that the Eqs. (6.1-21) have the total spatial differential order of eight. In other wards, if the equations are expressed in terms of the displacements $\left(u_{0}, \nu_{n}, w_{0}\right)$, they would contain secand-order spatial derivatives of u_{∞} and v_{s} and fourth-order spatial derivatives of w_{0}. Hence, the classical laminated plate theory is said to be an eighth_order theory. So, we only have eight integral constants. This implies that there should be only eight boundary Canditions. But, Eq (6.1-22) shows five essential and five natural bic. giving a total of ten boundary conditions.
To eliminate this discrepancy, in Eq. (6.1-19) the
following integral can be changed by using integrating by part technique.

$$
-\oint_{\Gamma} M_{n s} \frac{\partial \delta w_{0}}{\partial s} d s=\oint_{\Gamma} \frac{\partial M_{n s}}{\partial s} \delta w_{0} d s-\left[M_{n s} \delta w_{0}\right]_{\mu}
$$

The term in the square bracket is zero since the end points of a closed curve coincide. This term now must be added to Q_{n} (because it is a coefficient of δW_{0}):

$$
\begin{equation*}
v_{n}=Q_{n}+\frac{\partial M_{n s}}{\partial s}=\hat{Q}_{n} \tag{6.1-26}
\end{equation*}
$$

which should be balaned by the applied farce \hat{Q}_{n}.
This boundary condition, $V_{n}=\hat{Q}_{n}$, is known as the Kirchhoff free-edge Condition.

$$
\begin{array}{ll}
u_{n}, u_{s}, w_{0}, \frac{\partial w_{0}}{\partial n} & \text { Primary var. (essential b.c.) } \\
N_{n}, N_{n s}, v_{n}, M_{n} & \text { secondary var. (}{ }^{\prime} 1-27 \text {) }
\end{array}
$$

