

و روغنَك ل ب !

$$
\tau=\mu \frac{d u}{d y}
$$

μ
v 5
لز ,
 .c) (sajbolt)
ز ز 2ُم

$$
\mu=\rho\left(0.22 t-\frac{180}{t}\right) \times 10^{-6} \mathrm{Pa.s}
$$

P: t

 - SAE30

 .

(Pettoff's Bearing Model)

$$
\tau=\mu \frac{d u}{d y}
$$

$$
\begin{align*}
& c \ll 1 \rightarrow \frac{d u}{d y}=\frac{u-0}{c \cdot 0}=\frac{u}{c}=\frac{r \omega}{c}=\frac{2 \pi n r}{c} \\
& T=F \cdot r=(A \cdot \tau) \cdot r=2 \pi r \cdot l \tau \cdot r \tag{3}\\
& \xrightarrow{(3)(1)} T=2 \pi r l\left(\mu \times \frac{2 \pi r n}{c}\right) r=\frac{4 \pi^{2} r^{3} l \mu n}{c} \tag{4}
\end{align*}
$$

ducese $P=\frac{W}{2 r l}$
Shan $f=\frac{T}{w \cdot r}=2 \pi^{2} \frac{\mu_{n}}{P} \times \frac{r}{c}$

$$
\begin{align*}
& \xrightarrow{(6)} f=g\left(\frac{r}{c}, \frac{\mu n}{P}\right) \tag{6}
\end{align*}
$$

$$
\begin{aligned}
& \rightarrow \text { • }
\end{aligned}
$$

fr以
 ج.

 مَجْ

(

هرل رامعَى 今

c/l

$$
\begin{align*}
& \sum F_{x}=0 \tag{7}\\
& \Rightarrow\left(P+\frac{\partial p}{\partial x} d x\right) d z d y-P d z d y+\tau d z d 1-\left(\tau+\frac{d \tau}{d y} d y\right) d \tau d x=0
\end{align*}
$$

$$
\left.\begin{array}{l}
\Rightarrow \frac{d p}{d x}=\frac{\partial \tau}{\partial J} \\
\Rightarrow \quad \tau=\mu \frac{\partial u}{\partial y}
\end{array}\right\} \Rightarrow \frac{d p}{d x}=\mu \frac{d^{2} u}{d y^{2}}
$$

$$
B, C .:\left\{\begin{array}{l}
y=0 \Rightarrow u=0 \tag{10}\\
y=h \Rightarrow u=U
\end{array}\right.
$$

$$
u=\frac{1}{2 \mu} \frac{d p}{d x}\left(y^{\prime}-h y\right)+\frac{U}{h} y \quad \text { (II) }
$$

$$
\begin{align*}
& \int L(S) Q=\int_{0}^{h} u d y=\frac{v h}{2}-\frac{h^{3}}{12 \mu} \cdot \frac{d p}{d x} \tag{12}
\end{align*}
$$

$$
\begin{align*}
& \frac{d Q}{d x}=0 \Rightarrow \frac{U}{2} \cdot \frac{d h}{d x}-\frac{d}{d x}\left(\frac{h^{3}}{12 \mu} \cdot \frac{d p}{d x}\right)=0 \tag{13}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{h^{3}}{\mu} \cdot \frac{\partial P}{\partial x}\right)+\frac{\partial}{\partial z}\left(\frac{h^{3}}{\mu} \cdot \frac{\partial P}{\partial z}\right)=6 U \frac{\partial h}{\partial x} \tag{14}
\end{equation*}
$$

$$
\begin{array}{r}
\frac{r}{c} f=\phi\left[\left(\frac{r}{c}\right)^{2} \frac{\mu_{n}}{p}\right] \tag{10}\\
S=\left(\frac{r}{c}\right)^{2} \frac{\mu_{n}}{\underline{p}}
\end{array}
$$

ك

Raimondif Bayd $\operatorname{la\Delta n~JC,~}$ ملى
ارٍــَ رار ن.

Ctヒ!,

ه :

馆

: Q_{s}

$$
\begin{equation*}
\frac{Q_{s}}{Q}, \frac{\rho}{P_{\text {max }}}, \frac{r}{c} f, \epsilon=\frac{e}{c}, \frac{h_{0}}{c}, S=\frac{(r)^{2} \frac{\mu_{n}}{p}}{\frac{Q}{r c n l}} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
h_{0}+e=c \Rightarrow \frac{h_{0}}{c}+\frac{e}{c}=1 \Rightarrow \frac{h_{0}}{c}=1-\epsilon \tag{17}
\end{equation*}
$$

:

- 1

"

$$
\begin{align*}
& H=\rho C_{H}\left(Q-Q_{S}\right) \Delta T+\rho C_{H} Q_{S} \frac{\Delta T}{2} \tag{19}
\end{align*}
$$

$$
\begin{align*}
& \text { ازمرُقِ نتى } \\
& H=\rho C_{H} \Delta T\left(1-\frac{1}{2} \frac{Q_{s}}{Q}\right) Q \tag{20}
\end{align*}
$$

$$
\begin{align*}
\xrightarrow{18,19} & w f r \cdot 2 \pi n=\rho C_{H} \Delta T\left(1-\frac{1}{2} \frac{Q_{s}}{Q}\right) Q \\
\Rightarrow & \Delta T=\frac{2 \pi n f r w}{\rho C_{H}\left(1-\frac{1}{2} \frac{Q_{s}}{Q}\right) Q} \\
\Rightarrow \Delta T & =\frac{P}{\rho C_{H}} \frac{\left(\frac{r}{C} f\right) \times 4 \pi}{\left(1-\frac{1}{2} \frac{Q_{s}}{Q}\right) \times \frac{Q}{r C n l}} \tag{21}
\end{align*}
$$

$$
\begin{equation*}
T_{\text {var }}=\frac{\left(\frac{r}{c} f\right) \times 4 \pi}{\left(1-\frac{1}{2} \frac{Q_{s}}{Q}\right) \times \frac{Q}{r c n l}} \tag{22}
\end{equation*}
$$

, $\rho=861 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{C}$,

Figure 12-13
Viscosity-temperature chart in SI units. (Adapted from
Fig. 12-12.)

This corresponds to point A on Fig. 12-12, which is above the SAE 30 line and indicates that the viscosity used in the analysis was too high.

For a second guess, try $\mu=1.00 \mu$ reyn. Again we run through an analysis and this time find that $\Delta T=30^{\circ} \mathrm{F}$. This gives an average temperature of

$$
T_{\mathrm{av}}=180+\frac{30}{2}=195^{\circ} \mathrm{F}
$$

and locates point B on Fig. 12-12.
If points A and B are fairly close to each other and on opposite sides of the SAE 30 line, a straight line can be drawn between them with the intersection locating the correct values of viscosity and average temperature to be used in the analysis. For this illustration, we see from the viscosity chart that they are $T_{\mathrm{av}}=203^{\circ} \mathrm{F}$ and $\mu=1.20 \mu$ reyn.

Figure 12-14
Chart for multiviscosity lubricants. This chart was derived from known viscosities at two points, 100 and $210^{\circ} \mathrm{F}$, and the results are believed to be correct for other temperatures.

Oil Grade, SAE	Viscosity $\boldsymbol{\mu}_{\mathbf{0}}$, reyn	Constant $\mathbf{b},{ }^{\circ} \mathbf{F}$
10	$0.0158\left(10^{-6}\right)$	1157.5
20	$0.0136\left(10^{-6}\right)$	1271.6
30	$0.0141\left(10^{-6}\right)$	1360.0
40	$0.0121\left(10^{-6}\right)$	1474.4
50	$0.0170\left(10^{-6}\right)$	1509.6
60	$0.0187\left(10^{-6}\right)$	1564.0

[^0]
|Table 12-1

Curve Fits* to Approximate the Viscosity versus Temperature Functions for SAE Grades 10 to 60
Source: A. S. Seireg and
S. Dandage, "Empirical Design Procedure for the Thermodynamic Behavior of Journal Bearings," J. Lubrication Technology, vol. 104, April 1982, pp. 135-148.

Figure 12-15

Polar diagram of the
film-pressure distribution
showing the notation used.
(Raimondi and Boyd.)

| Figure 12-16
Chart for minimum film thickness variable and eccentricity ratio. The left boundary of the zone defines the optimal h_{0} for minimum friction; the right boundary is optimum h_{0} for load. (Raimondi and Boyd.)

Figure 12-17

Chart for determining the position of the minimum film thickness h_{0}. (Raimondi and Boyd.)

The remaining charts from Raimondi and Boyd relate several variables to the Sommerfeld number. These variables are

Minimum film thickness (Figs. 12-16 and 12-17)
Coefficient of friction (Fig. 12-18)
Lubricant flow (Figs. 12-19 and 12-20)
Film pressure (Figs. 12-21 and 12-22)
Figure 12-15 shows the notation used for the variables. We will describe the use of these curves in a series of four examples using the same set of given parameters.

Minimum Film Thickness

In Fig. 12-16, the minimum film thickness variable h_{0} / c and eccentricity ratio $\epsilon=e / c$ are plotted against the Sommerfeld number S with contours for various values of l / d. The corresponding angular position of the minimum film thickness is found in Fig. 12-17.

EXAMPLE 12-1 Determine h_{0} and e using the following given parameters: $\mu=4 \mu \mathrm{reyn}, N=30 \mathrm{rev} / \mathrm{s}$, $W=500 \mathrm{lbf}$ (bearing load), $r=0.75 \mathrm{in}, c=0.0015 \mathrm{in}$, and $l=1.5 \mathrm{in}$.

Solution The nominal bearing pressure (in projected area of the journal) is

$$
P=\frac{W}{2 r l}=\frac{500}{2(0.75) 1.5}=222 \mathrm{psi}
$$

The Sommerfeld number is, from Eq. (12-7), where $N=N_{j}=30 \mathrm{rev} / \mathrm{s}$,

$$
S=\binom{r}{c}^{2}\left(\frac{\mu N}{P}\right)=\left(\frac{0.75}{0.0015}\right)^{2}\left[\frac{4\left(10^{-6}\right) 30}{222}\right]=0.135
$$

Also, $l / d=1.50 /[2(0.75)]=1$. Entering Fig. $12-16$ with $S=0.135$ and $l / d=1$ gives $h_{0} / c=0.42$ and $\epsilon=0.58$. The quantity h_{0} / c is called the minimum film thickness
variable. Since $c=0.0015$ in, the minimum film thickness h_{0} is

$$
h_{0}=0.42(0.0015)=0.00063 \mathrm{in}
$$

We can find the angular location ϕ of the minimum film thickness from the chart of Fig. 12-17. Entering with $S=0.135$ and $l / d=1$ gives $\phi=53^{\circ}$.

The eccentricity ratio is $\epsilon=e / c=0.58$. This means the eccentricity e is

$$
e=0.58(0.0015)=0.00087 \mathrm{in}
$$

Note that if the journal is centered in the bushing, $e=0$ and $h_{0}=c$, corresponding to a very light (zero) load. Since $e=0, \epsilon=0$. As the load is increased the journal displaces downward; the limiting position is reached when $h_{0}=0$ and $e=c$, that is, when the journal touches the bushing. For this condition the eccentricity ratio is unity. Since $h_{0}=c-e$, dividing both sides by c, we have

$$
\frac{h_{0}}{c}=1-\epsilon
$$

Design optima are sometimes maximum load, which is a load-carrying characteristic of the bearing, and sometimes minimum parasitic power loss or minimum coefficient of friction. Dashed lines appear on Fig. 12-16 for maximum load and minimum coefficient of friction, so you can easily favor one of maximum load or minimum coefficient of friction, but not both. The zone between the two dashed-line contours might be considered a desirable location for a design point.

Coefficient of Friction

The friction chart, Fig. 12-18, has the friction variable $(r / c) f$ plotted against Sommerfeld number S with contours for various values of the l / d ratio.

EXAMPLE 12-2 Using the parameters given in Ex. 12-1, determine the coefficient of friction, the torque to overcome friction, and the power loss to friction.

Solution We enter Fig. 12-18 with $S=0.135$ and $l / d=1$ and find $(r / c) f=3.50$. The coefficient of friction f is

$$
f=3.50 c / r=3.50(0.0015 / 0.75)=0.0070
$$

The friction torque on the journal is

$$
T=f W r=0.007(500) 0.75=2.62 \mathrm{lbf} \cdot \mathrm{in}
$$

The power loss in horsepower is

$$
(h p)_{\text {loss }}=\frac{T N}{1050}=\frac{2.62(30)}{1050}=0.075 \mathrm{hp}
$$

or, expressed in Btu/s,

$$
H=\frac{2 \pi T N}{778(12)}=\frac{2 \pi(2.62) 30}{778(12)}=0.0529 \mathrm{Btu} / \mathrm{s}
$$

Figure 12-18
Chart for coefficient-of-friction variable; note that Petroff's equation is the asymptote. (Raimondi and Boyd.)

Lubricant Flow

Figures 12-19 and 12-20 are used to determine the lubricant flow and side flow.

EXAMPLE 12-3 Continuing with the parameters of Ex. 12-1, determine the total volumetric flow rate Q and the side flow rate Q_{s}.

Solution To estimate the lubricant flow, enter Fig. 12-19 with $S=0.135$ and $l / d=1$ to obtain $Q /(r c N l)=4.28$. The total volumetric flow rate is

$$
Q=4.28 r c N l=4.28(0.75) 0.0015(30) 1.5=0.217 \mathrm{in}^{3} / \mathrm{s}
$$

From Fig. 12-20 we find the flow ratio $Q_{s} / Q=0.655$ and Q_{s} is

$$
Q_{s}=0.655 Q=0.655(0.217)=0.142 \mathrm{in}^{3} / \mathrm{s}
$$

Figure 12-19

Chart for flow variable
Note: Not for pressure-fed
bearings. (Raimondi and Boyd.)

Figure 12-20
Chart for determining the ratio of side flow to total flow.
(Raimondi and Boyd.)

Figure 12-21

Chart for determining the maximum film pressure. Note: Not for pressure-fed bearings. (Raimondi and Boyd.)

The side leakage Q_{s} is from the lower part of the bearing, where the internal pressure is above atmospheric pressure. The leakage forms a fillet at the journal-bushing external junction, and it is carried by journal motion to the top of the bushing, where the internal pressure is below atmospheric pressure and the gap is much larger, to be "sucked in" and returned to the lubricant sump. That portion of side leakage that leaks away from the bearing has to be made up by adding oil to the bearing sump periodically by maintenance personnel.

Film Pressure

The maximum pressure developed in the film can be estimated by finding the pressure ratio $P / p_{\max }$ from the chart in Fig. 12-21. The locations where the terminating and maximum pressures occur, as defined in Fig 12-15, are determined from Fig. 12-22.

EXAMPLE 12-4 Using the parameters given in Ex. 12-1, determine the maximum film pressure and the locations of the maximum and terminating pressures.

Solution Entering Fig. 12-21 with $S=0.135$ and $l / d=1$, we find $P / p_{\max }=0.42$. The maximum pressure $p_{\text {max }}$ is therefore

$$
p_{\max }=\frac{P}{0.42}=\frac{222}{0.42}=529 \mathrm{psi}
$$

With $S=0.135$ and $l / d=1$, from Fig. $12-22, \theta_{p_{\text {max }}}=18.5^{\circ}$ and the terminating position $\theta_{p_{0}}$ is 75°.

Figure 12-22
Chart for finding the terminating position of the lubricant film and the position of maximum film pressure. (Raimondi and Boyd.)

Examples 12-1 to 12-4 demonstrate how the Raimondi and Boyd charts are used. It should be clear that we do not have journal-bearing parametric relations as equations, but in the form of charts. Moreover, the examples were simple because the steady-state equivalent viscosity was given. We will now show how the average film temperature (and the corresponding viscosity) is found from energy considerations.

Lubricant Temperature Rise

The temperature of the lubricant rises until the rate at which work is done by the journal on the film through fluid shear is the same as the rate at which heat is transferred to the greater surroundings. The specific arrangement of the bearing plumbing affects the quantitative relationships. See Fig. 12-23. A lubricant sump (internal or external to the bearing housing) supplies lubricant at sump temperature T_{s} to the bearing annulus at temperature $T_{s}=T_{1}$. The lubricant passes once around the bushing and is delivered at a higher lubricant temperature $T_{1}+\Delta T$ to the sump. Some of the lubricant leaks out of the bearing at a mixing-cup temperature of $T_{1}+\Delta T / 2$ and is returned to the sump. The sump may be a keyway-like groove in the bearing cap or a larger chamber up to half the bearing circumference. It can occupy "all" of the bearing cap of a split bearing. In such a bearing the side leakage occurs from the lower portion and is sucked back in, into the ruptured film arc. The sump could be well removed from the journal-bushing interface.

Figure 12-23

Schematic of a journal bearing with an external sump with cooling; lubricant makes one pass before returning to the sump.

Let
$Q=$ volumetric oil-flow rate into the bearing, $\mathrm{in}^{3} / \mathrm{s}$
$Q_{s}=$ volumetric side-flow leakage rate out of the bearing and to the sump, in $3 / \mathrm{s}$
$Q-Q_{s}=$ volumetric oil-flow discharge from annulus to sump, $\mathrm{in}^{3} / \mathrm{s}$
$T_{1}=$ oil inlet temperature (equal to sump temperature T_{s}), ${ }^{\circ} \mathrm{F}$
$\Delta T=$ temperature rise in oil between inlet and outlet, ${ }^{\circ} \mathrm{F}$
$\rho=$ lubricant density, lbm $/ \mathrm{in}^{3}$
$C_{p}=$ specific heat capacity of lubricant, Btu/(lbm $\left.\cdot{ }^{\circ} \mathrm{F}\right)$
$J=$ Joulean heat equivalent, in $\cdot \mathrm{lbf} / \mathrm{Btu}$
$H=$ heat rate, Btu/s
Using the sump as a control region, we can write an enthalpy balance. Using T_{1} as the datum temperature gives

$$
\begin{equation*}
H_{\mathrm{loss}}=\rho C_{p} Q_{s} \Delta T / 2+\rho C_{p}\left(Q-Q_{s}\right) \Delta T=\rho C_{p} Q \Delta T\left(1-\frac{1}{2} \frac{Q_{s}}{Q}\right) \tag{a}
\end{equation*}
$$

The thermal energy loss at steady state $H_{\text {loss }}$ is equal to the rate the journal does work on the film is $H_{\text {loss }}=\dot{\mathcal{W}}=2 \pi T N / J$. The torque $T=f W r$, the load in terms of pressure is $W=2 P r l$, and multiplying numerator and denominator by the clearance c gives

$$
\begin{equation*}
H_{\mathrm{loss}}=\frac{4 \pi \operatorname{PrlNc}}{J} \frac{r f}{c} \tag{b}
\end{equation*}
$$

Equating Eqs. (a) and (b) and rearranging results in

$$
\begin{equation*}
\frac{J \rho C_{p} \Delta T}{4 \pi P}=\frac{r f / c}{\left(1-0.5 Q_{s} / Q\right)[Q /(r c N l)]} \tag{c}
\end{equation*}
$$

For common petroleum lubricants $\rho=0.0311 \mathrm{lbm} / \mathrm{in}^{3}, C_{p}=0.42 \mathrm{Btu} /\left(\mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)$, and $J=778(12)=9336 \mathrm{in} \cdot \mathrm{lbf} / \mathrm{Btu}$; therefore the left term of Eq. (c) is

$$
\frac{J \rho C_{p} \Delta T}{4 \pi P}=\frac{9336(0.0311) 0.42 \Delta T_{F}}{4 \pi P_{\mathrm{psi}}}=9.70 \frac{\Delta T_{F}}{P_{\mathrm{psi}}}
$$

thus

$$
\begin{equation*}
\frac{9.70 \Delta T_{F}}{P_{\mathrm{psi}}}=\frac{r f / c}{\left(1-\frac{1}{2} Q_{s} / Q\right)\left[Q /\left(r c N_{j} l\right)\right]} \tag{12-15}
\end{equation*}
$$

Figure 12-24
Figures 12-18, 12-19, and 12-20 combined to reduce iterative table look-up. (Source: Chart based on work of Raimondi and Boyd boundary condition (2), i.e., no negative lubricant pressure developed. Chart is for full journal bearing using single lubricant pass, side flow emerges with temperature rise $\Delta T / 2$, thru flow emerges with temperature rise ΔT, and entire flow is supplied at datum sump temperature.)
where ΔT_{F} is the temperature rise in ${ }^{\circ} \mathrm{F}$ and P_{psi} is the bearing pressure in psi. The right side of Eq. (12-15) can be evaluated from Figs. 12-18, 12-19, and 12-20 for various Sommerfeld numbers and l / d ratios to give Fig. 12-24. It is easy to show that the left side of Eq. (12-15) can be expressed as $0.120 \Delta T_{C} / P_{\mathrm{MPa}}$ where ΔT_{C} is expressed in ${ }^{\circ} \mathrm{C}$ and the pressure P_{MPa} is expressed in MPa. The ordinate in Fig. 12-24 is either $9.70 \Delta T_{F} / P_{\mathrm{psi}}$ or $0.120 \Delta T_{C} / P_{\mathrm{MPa}}$, which is not surprising since both are dimensionless in proper units and identical in magnitude. Since solutions to bearing problems involve iteration and reading many graphs can introduce errors, Fig. 12-24 reduces three graphs to one, a step in the proper direction.

Interpolation

For l / d ratios other than the ones given in the charts, Raimondi and Boyd have provided the following interpolation equation

$$
\begin{align*}
y= & \frac{1}{(l / d)^{3}}\left[-\frac{1}{8}\left(1-\frac{l}{d}\right)\left(1-2 \frac{l}{d}\right)\left(1-4 \frac{l}{d}\right) y_{\infty}+\frac{1}{3}\left(1-2 \frac{l}{d}\right)\left(1-4 \frac{l}{d}\right) y_{1}\right. \\
& \left.-\frac{1}{4}\left(1-\frac{l}{d}\right)\left(1-4 \frac{l}{d}\right) y_{1 / 2}+\frac{1}{24}\left(1-\frac{l}{d}\right)\left(1-2 \frac{l}{d}\right) y_{1 / 4}\right] \tag{12-16}
\end{align*}
$$

[^0]: * $\mu=\mu_{0} \exp [b /(T+95)], T$ in ${ }^{\circ} \mathrm{F}$.

